RRC ID 15533
著者 Kunda P, Rodrigues NT, Moeendarbary E, Liu T, Ivetic A, Charras G, Baum B.
タイトル PP1-mediated moesin dephosphorylation couples polar relaxation to mitotic exit.
ジャーナル Curr Biol
Abstract Animal cells undergo dramatic actin-dependent changes in shape as they progress through mitosis; they round up upon mitotic entry and elongate during chromosome segregation before dividing into two [1-3]. Moesin, the sole Drosophila ERM-family protein [4], plays a critical role in this process, through the construction of a stiff, rounded metaphase cortex [5-7]. At mitotic exit, this rigid cortex must be dismantled to allow for anaphase elongation and cytokinesis through the loss of the active pool of phospho-Thr559moesin from cell poles. Here, in an RNA interference (RNAi) screen for phosphatases involved in the temporal and spatial control of moesin, we identify PP1-87B RNAi as having elevated p-moesin levels and reduced cortical compliance. In mitosis, RNAi-induced depletion of PP1-87B or depletion of a conserved noncatalytic PP1 phosphatase subunit Sds22 leads to defects in p-moesin clearance from cell poles at anaphase, a delay in anaphase elongation, together with defects in bipolar anaphase relaxation and cytokinesis. Importantly, similar cortical defects are seen at anaphase following the expression of a constitutively active, phosphomimetic version of moesin. These data reveal a new role for the PP1-87B/Sds22 phosphatase, an important regulator of the metaphase-anaphase transition, in coupling moesin-dependent cell shape changes to mitotic exit.
巻・号 22(3)
ページ 231-6
公開日 2012-2-7
DOI 10.1016/j.cub.2011.12.016
PII S0960-9822(11)01391-1
PMID 22209527
MeSH Animals Cells, Cultured Drosophila melanogaster / cytology* Membrane Proteins / physiology* Mitosis / physiology* Phosphorylation Protein Phosphatase 1 / chemistry Protein Phosphatase 1 / metabolism Protein Phosphatase 1 / physiology* RNA Interference
IF 9.601
引用数 44
WOS 分野 BIOCHEMISTRY & MOLECULAR BIOLOGY CELL BIOLOGY
リソース情報
ショウジョウバエ