RRC ID 6238
著者 Grant PK, Moens CB.
タイトル The neuroepithelial basement membrane serves as a boundary and a substrate for neuron migration in the zebrafish hindbrain.
ジャーナル Neural Dev
Abstract BACKGROUND:The facial branchiomotor neurons of cranial nerve VII undergo a stereotyped tangential migration in the zebrafish hindbrain that provides an ideal system for examining the complex interactions between neurons and their environment that result in directed migration. Several studies have shown the importance of the planar cell polarity pathway in facial branchiomotor neuron migration but the role of apical-basal polarity has not been determined. Here we examine the role of the PAR-aPKC complex in forming the basal structures that guide facial branchiomotor neurons on an appropriate migratory path.
RESULTS:High resolution timelapse imaging reveals that facial branchiomotor neurons begin their migration by moving slowly ventrally and posteriorly with their centrosomes oriented medially and then, upon contact with the Laminin-containing basement membrane at the rhombomere 4-rhombomere 5 boundary, speed up and reorient their centrosomes on the anterior-posterior axis. Disruption of the PAR-aPKC complex members aPKClambda, aPKCzeta, and Pard6gb results in an ectopic ventral migration in which facial branchiomotor neurons escape from the hindbrain through holes in the Laminin-containing basement membrane. Mosaic analysis reveals that the requirement for aPKC is cell-nonautonomous, indicating that it is likely required in the surrounding polarized neuroepithelium rather than in facial motor neurons themselves. Ventral facial motor neuron ectopia can be phenocopied by mutation of lamininalpha1, suggesting that it is defects in maintenance of the laminin-containing basement membrane that are the likely cause of ventral mismigration in aPKClambda+zeta double morphants.
CONCLUSIONS:Our results suggest that the laminin-containing ventral basement membrane, dependent on the activity of the PAR-aPKC complex in the hindbrain neuroepithelium, is both a substrate for migration and a boundary that constrains facial branchiomotor neurons to the appropriate migratory path.
巻・号 5
ページ 9
公開日 2010-3-29
DOI 10.1186/1749-8104-5-9
PII 1749-8104-5-9
PMID 20350296
PMC PMC2857861
MeSH Adaptor Proteins, Signal Transducing / genetics Adaptor Proteins, Signal Transducing / metabolism Animals Basement Membrane / physiology Basement Membrane / ultrastructure* Branchial Region / embryology Cell Movement / genetics* Cell Polarity / physiology Choristoma / genetics Choristoma / metabolism Gene Expression Regulation, Developmental / genetics Laminin / genetics Laminin / metabolism Motor Neurons / physiology Motor Neurons / ultrastructure* Muscle, Skeletal / innervation Mutation / genetics Neuroepithelial Cells / physiology Neuroepithelial Cells / ultrastructure* Phenotype Protein Kinase C / chemistry Protein Kinase C / genetics Protein Kinase C / metabolism Rhombencephalon / embryology* Zebrafish / embryology* Zebrafish Proteins / genetics Zebrafish Proteins / metabolism
IF 2.63
引用数 30
WOS 分野 NEUROSCIENCES DEVELOPMENTAL BIOLOGY
リソース情報
ゼブラフィッシュ rw0(Tg(CM-isl1:GFP)) rw013(Tg (zCREST1-hsp70:GFP))?