RRC ID 36447
著者 Mansouri FA, Buckley MJ, Mahboubi M, Tanaka K.
タイトル Behavioral consequences of selective damage to frontal pole and posterior cingulate cortices.
ジャーナル Proc Natl Acad Sci U S A
Abstract Frontal pole cortex (FPC) and posterior cingulate cortex (PCC) have close neuroanatomical connections, and imaging studies have shown coactivation or codeactivation of these brain regions during performance of certain tasks. However, they are among the least well-understood regions of the primate brain. One reason for this is that the consequences of selective bilateral lesions to either structure have not previously been studied in any primate species. We studied the effects of circumscribed bilateral lesions to FPC or PCC on monkeys' ability to perform an analog of Wisconsin Card Sorting Test (WCST) and related tasks. In contrast to lesions in other prefrontal regions, neither posttraining FPC nor PCC lesions impaired animals' abilities to follow the rule switches that frequently occurred within the WCST task. However, FPC lesions were not without effect, because they augmented the ability of animals to adjust cognitive control after experiencing high levels of conflict (whereas PCC lesions did not have any effect). In addition, FPC-lesioned monkeys were more successful than controls or PCC-lesioned animals at remembering the relevant rule across experimentally imposed distractions involving either an intervening secondary task or a surprising delivery of free reward. Although prefrontal cortex posterior to FPC is specialized for mediating efficient goal-directed behavior to maximally exploit reward opportunities from ongoing tasks, our data led us to suggest that FPC is, instead, specialized for disengaging executive control from the current task and redistributing it to novel sources of reward to explore new opportunities/goals.
巻・号 112(29)
ページ E3940-9
公開日 2015-7-21
DOI 10.1073/pnas.1422629112
PII 1422629112
PMID 26150522
PMC PMC4517212
MeSH Adaptation, Physiological Animals Behavior, Animal* Cognition Frontal Lobe / pathology* Frontal Lobe / physiopathology* Gyrus Cinguli / pathology* Gyrus Cinguli / physiopathology* Haplorhini Learning Magnetic Resonance Imaging Male Models, Biological Task Performance and Analysis
IF 9.412
引用数 36
WOS 分野 NEUROSCIENCES
リソース情報
ニホンザル