RRC ID 73473
著者 Hiyamizu S, Qiu H, Vuolo L, Stevenson NL, Shak C, Heesom KJ, Hamada Y, Tsurumi Y, Chiba S, Katoh Y, Stephens DJ, Nakayama K.
タイトル Multiple interactions of the dynein-2 complex with the IFT-B complex are required for effective IFT.
ジャーナル J Cell Sci
Abstract The dynein-2 complex must be transported anterogradely within cilia to then drive retrograde trafficking of the intraflagellar transport (IFT) machinery containing IFT-A and IFT-B complexes. Here, we screened for potential interactions between the dynein-2 and IFT-B complexes and found multiple interactions among the dynein-2 and IFT-B subunits. In particular, WDR60/DYNC2I1 and the DYNC2H1-DYNC2LI1 dimer from dynein-2, and IFT54 and IFT57 from IFT-B contribute to the dynein-2-IFT-B interactions. WDR60 interacts with IFT54 via a conserved region N-terminal to its light chain-binding regions. Expression of the WDR60 constructs in WDR60-knockout (KO) cells revealed that N-terminal truncation mutants lacking the IFT54-binding site fail to rescue abnormal phenotypes of WDR60-KO cells, such as aberrant accumulation of the IFT machinery around the ciliary tip and on the distal side of the transition zone. However, a WDR60 construct specifically lacking just the IFT54-binding site substantially restored the ciliary defects. In line with the current docking model of dynein-2 with the anterograde IFT trains, these results indicate that extensive interactions involving multiple subunits from the dynein-2 and IFT-B complexes participate in their connection.
公開日 2023-1-12
DOI 10.1242/jcs.260462
PII 286585
PMID 36632779
IF 4.573
リソース情報
ヒト・動物細胞 293T(RCB2202)