RRC ID 73474
Author Yang X, Lin Y, Chen T, Hu W, Li P, Qiu X, Yang B, Liang A, Gao W.
Title YTHDF1 enhances chondrogenic differentiation by activating the Wnt/β-catenin signaling pathway.
Journal Stem Cells Dev
Abstract Cartilage is derived from the chondrogenic differentiation of stem cells, for which the regulatory mechanism has not been fully elucidated. N6-methyladenosine (m6A) mRNA methylation is the most common posttranscriptional modification in eukaryotic mRNAs and is mediated by m6A regulators. However, whether m6A regulators play roles in chondrogenic differentiation is unknown. Herein, we aim to determine the role of a main m6A reader protein, YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), in chondrogenic differentiation regulation. Western blotting assays found the expression of YTHDF1 increased during chondrogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). The results of qPCR, western blotting, immunohistochemistry and Alcian blue staining revealed that overexpression of YTHDF1 increased cartilage matrix synthesis and the expression of chondrogenic markers when hBMSCs, ATDC5 cells, or C3H10T1/2 cells were induced to undergo chondrogenesis. Conversely, chondrogenesis was clearly inhibited when YTHDF1 was knocked down in hBMSCs, ATDC5 cells, or C3H10T1/2 cells. Further RNA sequencing and molecular biology experiments found that YTHDF1 activated the Wnt/β-catenin signaling pathway during chondrogenic differentiation. Finally, the effects of overexpression and knockdown of YTHDF1 on chondrogenic differentiation were reversed by inhibiting or activating β-catenin activity. Therefore, we demonstrated that YTDHF1 promoted chondrogenic differentiation through activation of the Wnt/β-catenin signaling pathway.
Published 2023-1-17
DOI 10.1089/scd.2022.0216
PMID 36647682
Resource
Human and Animal Cells ATDC5(RCB0565)