RRC ID 83287
Author Dziadosz-Brzezińska A, Kusiński S, Piróg A, Urban-Wójciuk Z, Padariya M, Kalathiya U, Kote S, Sznarkowska A.
Title Considerations for antibody-based detection of NRF2 in human cells.
Journal Redox Biol
Abstract Based on the knockdown and overexpression experiments, it is accepted that in Tris-glycine SDS-PAGE human NRF2 migrates above 100 kDa, depending on the percentage of the gel. In 8 % Tris-glycine gel, monoclonal anti-NRF2 antibodies detect NRF2 signal as three bands migrating between 100 and 130 kDa. Here we used mass spectrometry to identify proteins immunoprecipitated by anti-NRF2 antibodies migrating in this range under steady state, upon NRF2 activator tert-BHQ and after translation inhibition with emetine. Our results show that three commercial monoclonal antibodies with epitopes in the center and in the C-terminus of NRF2 also bind calmegin, an ER-residing chaperone, that co-migrates with NRF2 in SDS-PAGE and gives stronger signal in western blot than NRF2. Calmegin has a much longer half life than NRF2 and resides in the cytoplasm, which differentiates it from NRF2. The most specific anti-NRF2 antibody in western blot, Cell Signaling Technology clone E5F1 is also specific in staining nuclear NRF2 in immunofluorescence. Other antibodies, that recognize calmegin in western blot, still can be specific for nuclear NRF2 in immunofluorescence, but require prior validation with NRF2 knockdown or knockout. These results appeal for caution and consideration when analyzing and interpreting results from antibody-based NRF2 detection.
Volume 81
Pages 103549
Published 2025-2-12
DOI 10.1016/j.redox.2025.103549
PII S2213-2317(25)00062-X
PMID 40043449
Resource
Human and Animal Cells RERF-LC-AI(RCB0444) A549(RCB0098)