RRC ID 15608
Author Saunders AH, Griffiths AE, Lee KH, Cicchillo RM, Tu L, Stromberg JA, Krebs C, Booker SJ.
Title Characterization of quinolinate synthases from Escherichia coli, Mycobacterium tuberculosis, and Pyrococcus horikoshii indicates that [4Fe-4S] clusters are common cofactors throughout this class of enzymes.
Journal Biochemistry
Abstract Quinolinate synthase (NadA) catalyzes a unique condensation reaction between iminoaspartate and dihydroxyacetone phosphate, affording quinolinic acid, a central intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD). Iminoaspartate is generated via the action of l-aspartate oxidase (NadB), which catalyzes the first step in the biosynthesis of NAD in most prokaryotes. NadA from Escherichia coli was hypothesized to contain an iron-sulfur cluster as early as 1991, because of its observed labile activity, especially in the presence of hyperbaric oxygen, and because its primary structure contained a CXXCXXC motif, which is commonly found in the [4Fe-4S] ferredoxin class of iron-sulfur (Fe/S) proteins. Indeed, using analytical methods in concert with Mossbauer and electron paramagnetic resonance spectroscopies, the protein was later shown to harbor a [4Fe-4S] cluster. Recently, the X-ray structure of NadA from Pyrococcus horikoshii was solved to 2.0 A resolution [Sakuraba, H., Tsuge, H.,Yoneda, K., Katunuma, N., and Ohshima, T. (2005) J. Biol. Chem. 280, 26645-26648]. This protein does not contain a CXXCXXC motif, and no Fe/S cluster was observed in the structure or even mentioned in the report. Moreover, rates of quinolinic acid production were reported to be 2.2 micromol min (-1) mg (-1), significantly greater than that of E. coli NadA containing an Fe/S cluster (0.10 micromol min (-1) mg (-1)), suggesting that the [4Fe-4S] cluster of E. coli NadA may not be necessary for catalysis. In the study described herein, nadA genes from both Mycobacterium tuberculosis and Pyrococcus horikoshii were cloned, and their protein products shown to contain [4Fe-4S] clusters that are absolutely required for activity despite the absence of a CXXCXXC motif in their primary structures. Moreover, E. coli NadA, which contains nine cysteine residues, is shown to require only three for turnover (C113, C200, and C297), of which only C297 resides in the CXXCXXC motif. These results are consistent with a bioinformatics analysis of NadA sequences, which indicates that three cysteines are strictly conserved across all species. This study concludes that all currently annotated quinolinate synthases harbor a [4Fe-4S] cluster, that the crystal structure reported by Sakuraba et al. does not accurately represent the active site of the protein, and that the "activity" reported does not correspond to quinolinate formation.
Volume 47(41)
Pages 10999-1012
Published 2008-10-14
DOI 10.1021/bi801268f
PMID 18803397
PMC PMC2647848
MeSH Chromatography, High Pressure Liquid Cloning, Molecular Crystallography, X-Ray Escherichia coli / enzymology* Gene Expression Regulation, Enzymologic Multienzyme Complexes / genetics Multienzyme Complexes / metabolism* Mycobacterium tuberculosis / enzymology* Pyrococcus horikoshii / enzymology* Spectrophotometry, Ultraviolet
IF 2.952
Times Cited 18
General Microbes JCM 9974