RRC ID 2191
Author Hirasawa T, Nakakura Y, Yoshikawa K, Ashitani K, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S.
Title Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.
Journal Appl. Microbiol. Biotechnol.
Abstract To construct yeast strains showing tolerance to high salt concentration stress, we analyzed the transcriptional response to high NaCl concentration stress in the yeast Saccharomyces cerevisiae using DNA microarray and compared between two yeast strains, a laboratory strain and a brewing one, which is known as a stress-tolerant strain. Gene expression dynamically changed following the addition of NaCl in both yeast strains, but the degree of change in the gene expression level in the laboratory strain was larger than that in the brewing strain. The response of gene expression to the low NaCl concentration stress was faster than that to the high NaCl concentration stress in both strains. Expressions of the genes encoding enzymes involved in carbohydrate metabolism and energy production in both strains or amino acid metabolism in the brewing strain were increased under high NaCl concentration conditions. Moreover, the genes encoding sodium ion efflux pump and copper metallothionein proteins were more highly expressed in the brewing strain than in the laboratory strain. According to the results of transcriptome analysis, candidate genes for the creation of stress-tolerant strain were selected, and the effect of overexpression of candidate genes on the tolerance to high NaCl concentration stress was evaluated. Overexpression of the GPD1 gene encoding glycerol-3-phosphate dehydrogenase, ENA1 encoding sodium ion efflux protein, and CUP1 encoding copper metallothionein conferred high salt stress tolerance to yeast cells, and our selection of candidate genes for the creation of stress-tolerant yeast strains based on the transcriptome data was validated.
Volume 70(3)
Pages 346-57
Published 2006-4
DOI 10.1007/s00253-005-0192-6
PMID 16283296
MeSH Gene Expression Regulation, Fungal Heat-Shock Response* Laboratories Oligonucleotide Array Sequence Analysis / methods* Oryza / metabolism Saccharomyces cerevisiae / classification Saccharomyces cerevisiae / drug effects* Saccharomyces cerevisiae / growth & development Saccharomyces cerevisiae / physiology Saccharomyces cerevisiae Proteins / genetics Saccharomyces cerevisiae Proteins / metabolism* Sodium Chloride / pharmacology* Transcription, Genetic Wine / microbiology
IF 3.34
Times Cited 38
WOS Category BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Resource
Yeast BY5210