RRC ID 26970
Author Wakahama T, Laza-Martínez A, Bin Haji Mohd Taha AI, Okuyama H, Yoshida K, Kogame K, Awai K, Kawachi M, Maoka T, Takaichi S.
Title Structural Confirmation of a Unique Carotenoid Lactoside, P457, in Symbiodinium sp. Strain nbrc 104787 Isolated from a Sea Anemone and its Distribution in Dinoflagellates and Various Marine Organisms.
Journal J Phycol
Abstract The molecular structure of the carotenoid lactoside P457, (3S,5R,6R,3'S,5'R,6'S)-13'-cis-5,6-epoxy-3',5'-dihydroxy-3-(β-d-galactosyl-(1→4)-β-d-glucosyl)oxy-6',7'-didehydro-5,6,7,8,5',6'-hexahydro-β,β-caroten-20-al, was confirmed by spectroscopic methods using Symbiodinium sp. strain NBRC 104787 cells isolated from a sea anemone. Among various algae, cyanobacteria, land plants, and marine invertebrates, the distribution of this unique diglycosyl carotenoid was restricted to free-living peridinin-containing dinoflagellates and marine invertebrates that harbor peridinin-containing zooxanthellae. Neoxanthin appeared to be a common precursor for biosynthesis of peridinin and P457, although neoxanthin was not found in peridinin-containing dinoflagellates. Fucoxanthin-containing dinoflagellates did not possess peridinin or P457; green dinoflagellates, which contain chlorophyll a and b, did not contain peridinin, fucoxanthin, or P457; and no unicellular algae containing both peridinin and P457, other than peridinin-containing dinoflagellates, have been observed. Therefore, the biosynthetic pathways for peridinin and P457 may have been coestablished during the evolution of dinoflagellates after the host heterotrophic eukaryotic microorganism formed a symbiotic association with red alga that does not contain peridinin or P457.
Volume 48(6)
Pages 1392-402
Published 2012-12-1
DOI 10.1111/j.1529-8817.2012.01219.x
PMID 27009990
IF 2.328
Times Cited 4
WOS Category PLANT SCIENCES MARINE & FRESHWATER BIOLOGY
Resource
Algae NIES-2638 NIES-2639 NIES-2640 NIES-2642