RRC ID 27337
Author Nukumizu Y, Wada T, Tominaga-Wada R.
Title Tomato (Solanum lycopersicum) homologs of TRIPTYCHON (SlTRY) and GLABRA3 (SlGL3) are involved in anthocyanin accumulation.
Journal Plant Signal Behav
Abstract In Arabidopsis thaliana the CPC-like MYB transcription factors [CAPRICE (CPC), TRIPTYCHON (TRY), ENHANCER OF TRY AND CPC 1, 2, 3/CPC-LIKE MYB 3 (ETC1, ETC2, ETC3/CPL3), TRICHOMELESS 1, 2/CPC-LIKE MYB 4 (TCL1, TCL2/CPL4)] and the bHLH transcription factors [GLABRA3 (GL3) and ENHANCER OF GLABRA 3 (EGL3)] are central regulators of trichome initiation and root-hair differentiation. By transforming the tomato orthologous genes SlTRY (TRY) and SlGL3 (GL3) into Arabidopsis, we demonstrated that SlTRY inhibited trichome initiation and enhanced root-hair differentiation. These results suggest that tomato and Arabidopsis partially use similar transcription factors for epidermal cell differentiation, and that a CPC-like R3 MYB may be a key common regulator of plant trichome and root-hair development. CPC and GL3 are also known to be involved in anthocyanin biosynthesis. Here, we show that anthocyanin accumulation was repressed in the CPC::SlTRY and GL3::SlGL3 transgenic plants, suggesting that SlTRY and SlGL3 can influence anthocyanin pigment synthesis.
Volume 8(7)
Pages e24575
Published 2013-7-1
DOI 10.4161/psb.24575
PII 24575
PMID 23603939
PMC PMC3907391
MeSH Anthocyanins / metabolism* Arabidopsis Lycopersicon esculentum / genetics Lycopersicon esculentum / metabolism* Plant Proteins / genetics Plant Proteins / metabolism* Plants, Genetically Modified / metabolism
IF 1.671
Times Cited 16
Resource
Tomato