RRC ID 34395
Author Rohe L, Anderson TH, Braker G, Flessa H, Giesemann A, Lewicka-Szczebak D, Wrage-Mönnig N, Well R.
Title Dual isotope and isotopomer signatures of nitrous oxide from fungal denitrification--a pure culture study.
Journal Rapid Commun Mass Spectrom
Abstract RATIONALE:The contribution of fungal denitrification to the emission of the greenhouse gas nitrous oxide (N2O) from soil has not yet been sufficiently investigated. The intramolecular (15)N site preference (SP) of N2O could provide a tool to distinguish between N2O produced by bacteria or fungi, since in previous studies fungi exhibited much higher SP values than bacteria.
METHODS:To further constrain isotopic evidence of fungal denitrification, we incubated six soil fungal strains under denitrifying conditions, with either NO3(-) or NO2(-) as the electron acceptor, and measured the isotopic signature (δ(18)O, δ(15)Nbulk and SP values) of the N2O produced. The nitrogen isotopic fractionation was calculated and the oxygen isotope exchange associated with particular fungal enzymes was estimated.
RESULTS:Five fungi of the order Hypocreales produced N2O with a SP of 35.1 ± 1.7 ‰ after 7 days of anaerobic incubation independent of the electron acceptor, whereas one Sordariales species produced N2O from NO2(-) only, with a SP value of 21.9 ± 1.4 ‰. Smaller isotope effects of (15)Nbulk were associated with larger N2O production. The δ(18)O values were influenced by oxygen exchange between water and denitrification intermediates, which occurred primarily at the nitrite reduction step.
CONCLUSIONS:Our results confirm that SP of N2O is a promising tool to differentiate between fungal and bacterial N2O from denitrification. Modelling of oxygen isotope fractionation processes indicated that the contribution of the NO2(-) and NO reduction steps to the total oxygen exchange differed among the various fungal species studied. However, more information is needed about different biological orders of fungi as they may differ in denitrification enzymes and consequently in the SP and δ(18)O values of the N2O produced.
Volume 28(17)
Pages 1893-903
Published 2014-9-15
DOI 10.1002/rcm.6975
PMID 25088133
MeSH Anaerobiosis Carbon Isotopes / analysis* Denitrification Gas Chromatography-Mass Spectrometry Hypocreales / metabolism* Hypocreales / physiology Nitrogen Isotopes / analysis* Nitrous Oxide / metabolism*
IF 2.2
Times Cited 40
WOS Category SPECTROSCOPY BIOCHEMICAL RESEARCH METHODS CHEMISTRY, ANALYTICAL
Resource
General Microbes JCM 1875 JCM 11502 JCM 22733