RRC ID 37749
著者 Mizuno K, Katoh M, Okumura H, Nakagawa N, Negishi T, Hashizume T, Nakajima M, Yokoi T.
タイトル Metabolic activation of benzodiazepines by CYP3A4.
ジャーナル Drug Metab Dispos
Abstract Cytochrome P450 3A4 is the predominant isoform in liver, and it metabolizes more than 50% of the clinical drugs commonly used. However, CYP3A4 is also responsible for metabolic activation of drugs, leading to liver injury. Benzodiazepines are widely used as hypnotics and sedatives for anxiety, but some of them induce liver injury in humans. To clarify whether benzodiazepines are metabolically activated, 14 benzodiazepines were investigated for their cytotoxic effects on HepG2 cells treated with recombinant CYP3A4. By exposure to 100 microM flunitrazepam, nimetazepam, or nitrazepam, the cell viability in the presence of CYP3A4 decreased more than 25% compared with that of the control. In contrast, in the case of other benzodiazepines, the changes in the cell viability between CYP3A4 and control Supersomes were less than 10%. These results suggested that nitrobenzodiazepines such as flunitrazepam, nimetazepam, and nitrazepam were metabolically activated by CYP3A4, which resulted in cytotoxicity. To identify the reactive metabolite, the glutathione adducts of flunitrazepam and nimetazepam were investigated by liquid chromatography-tandem mass spectrometry. The structural analysis for the glutathione adducts of flunitrazepam indicated that a nitrogen atom in the side chain of flunitrazepam was conjugated with the thiol of glutathione. Therefore, the presence of a nitro group in the side chain of benzodiazepines may play a crucial role in the metabolic activation by CYP3A4. The present study suggested that metabolic activation by CYP3A4 was one of the mechanisms of liver injury by nitrobenzodiazepines.
巻・号 37(2)
ページ 345-51
公開日 2009-2-1
DOI 10.1124/dmd.108.024521
PII dmd.108.024521
PMID 19005028
MeSH Benzodiazepines / metabolism* Biotransformation Caspase 3 / metabolism Caspase 7 / metabolism Cell Survival / drug effects Cytochrome P-450 CYP3A / metabolism* Flunitrazepam / metabolism Flunitrazepam / pharmacology Glutathione / metabolism Humans Nitrazepam / analogs & derivatives Nitrazepam / metabolism Nitrazepam / pharmacology Tumor Cells, Cultured
IF 3.231
引用数 24
WOS 分野 PHARMACOLOGY & PHARMACY
リソース情報
ヒト・動物細胞