RRC ID 43062
著者 Iwasaki Y, Takami U, Shinohara Y, Kurita K, Akiyoshi K.
タイトル Selective biorecognition and preservation of cell function on carbohydrate-immobilized phosphorylcholine polymers.
ジャーナル Biomacromolecules
Abstract To obtain synthetic materials capable of selectively recognizing proteins and cells, and preserving their functions, biomembrane mimetic polymers having a phospholipid polar group and carbohydrate side chains were designed. Poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (BMA)-co-2-lactobionamidoethyl methacrylate (LAMA)] (PMBL) was synthesized and coated on substrates by solvent evaporation. Selective binding of galactose-recognized lectin, RCA120, to a PMBL surface was investigated by measurement of surface plasmon resonance. The binding of RCA120 to the PMBL surface was confirmed by a remarkable change in resonance angle. The apparent affinity constant of RCA120 to PMBL3.0 (3.0 mol % LAMA unit in the feed) per LAMA unit was 2.77 x 10(5) M(-1). When a glucose-recognized lectin, concanavalin A, was in contact with PMBL, no change in the resonance angle was observed, and any nonspecific fouling of protein on PMBL was effectively reduced. Cells of the human hepatocellular liver carcinoma cell line (HepG2) having asialoglycoprotein receptors (ASGPRs) were seeded on polymer surfaces. On poly(BMA) (PBMA), many adherent cells were observed and were well-spread with monolayer adhesion, but cell adhesion was reduced on poly(MPC-co-BMA) (PMB). HepG2 adhesion was observed on PMBL because the cell has ASGPRs; the number of cells adhering to the PMBL polymer surfaces increased with an increase in the density of galactose residues on the surface. In contrast, adhesion of NIH-3T3 cells to PMBL was reduced in a manner similar to that on PMB because the NIH-3T3 cells did not have ASGPRs. Cell adhesion to the PMBL surface was well-regulated by ligand-receptor interactions. Furthermore, some of the cells adhering to the PMBL surface had a spheroid form, and similarly shaped spheroids were scattered on the surface. Although poly(BMA-co-LAMA) (PBL) has galactose residues, the adherent cells were spread in a manner similar to those on PBMA. The MPC units in PMBL contribute to make a spheroid formation of HepG2 cells. The amount of albumin secreted from a cell was compared with the chemical structure of the substrate. The spheroid shaped cells cultured on the PMBL surface secreted much more albumin than did the spreading cells that adhered to the PBMA. In conclusion, the biomembrane mimetic carbohydrate-immobilized phosphorylcholine polymers produced a suitable surface for biorecognition and preservation of cell function.
巻・号 8(9)
ページ 2788-94
公開日 2007-9-1
DOI 10.1021/bm700478d
PMID 17663529
MeSH Albumins / metabolism Animals Carbohydrates / chemistry* Cell Culture Techniques Cell Line Cell Line, Tumor Cells, Immobilized / metabolism* Hepatocytes / physiology Humans Lectins / chemistry Mice NIH 3T3 Cells Phosphorylcholine / chemistry* Polymers / chemistry* Protein Binding
IF 6.092
引用数 37
WOS 分野 POLYMER SCIENCE CHEMISTRY, ORGANIC BIOCHEMISTRY & MOLECULAR BIOLOGY
リソース情報
ヒト・動物細胞