RRC ID 51008
Author Czarnecki J, Dziewit L, Puzyna M, Prochwicz E, Tudek A, Wibberg D, Schlüter A, Pühler A, Bartosik D.
Title Lifestyle-determining extrachromosomal replicon pAMV1 and its contribution to the carbon metabolism of the methylotrophic bacterium Paracoccus aminovorans JCM 7685.
Journal Environ. Microbiol.
Abstract Plasmids play an important role in the adaptation of bacteria to changeable environmental conditions. As the main vectors of horizontal gene transfer, they can spread genetic information among bacteria, sometimes even across taxonomic boundaries. Some plasmids carry genes involved in the utilization of particular carbon compounds, which can provide a competitive advantage to their hosts in particular ecological niches. Analysis of the multireplicon genome of the soil bacterium P. aminovorans JCM 7685 revealed the presence of an extrachromosomal replicon pAMV1 (185 kb) with a unique structure and properties. This lifestyle-determining plasmid carries genes facilitating the metabolism of many different carbon compounds including sugars, short-chain organic acids and C1 compounds. Plasmid pAMV1 contains a large methylotrophy island (MEI) that is essential not only for the utilization of particular C1 compounds but also for the central methylotrophic metabolism required for the assimilation of C1 units (serine cycle). We demonstrate that the expression of the main serine cycle genes is induced in the presence of C1 compounds by the transcriptional regulator ScyR. The extrachromosomal localization of the MEI and the distribution of related genes in Paracoccus spp. indicate that it could have been acquired by HGT by an ancestor of P. aminovorans.
Volume 19(11)
Pages 4536-4550
Published 2017-11
DOI 10.1111/1462-2920.13901
PMID 28856785
MeSH Carbon / metabolism* Gene Expression Regulation, Bacterial / genetics Gene Transfer, Horizontal / genetics Genome, Bacterial / genetics Paracoccus / genetics* Paracoccus / metabolism* Plasmids / genetics* Replicon / genetics*
IF 5.147
Resource
General Microbes JCM 7685