RRC ID 52154
著者 Kawata M, Taniguchi Y, Mori D, Yano F, Ohba S, Chung UI, Shimogori T, Mills AA, Tanaka S, Saito T.
タイトル Different regulation of limb development by p63 transcript variants.
ジャーナル PLoS One
Abstract The apical ectodermal ridge (AER), located at the distal end of each limb bud, is a key signaling center which controls outgrowth and patterning of the proximal-distal axis of the limb through secretion of various molecules. Fibroblast growth factors (FGFs), particularly Fgf8 and Fgf4, are representative molecules produced by AER cells, and essential to maintain the AER and cell proliferation in the underlying mesenchyme, meanwhile Jag2-Notch pathway negatively regulates the AER and limb development. p63, a transcription factor of the p53 family, is expressed in the AER and indispensable for limb formation. However, the underlying mechanisms and specific roles of p63 variants are unknown. Here, we quantified the expression of p63 variants in mouse limbs from embryonic day (E) 10.5 to E12.5, and found that ΔNp63γ was strongly expressed in limbs at all stages, while TAp63γ expression was rapidly increased in the later stages. Fluorescence-activated cell sorting analysis of limb bud cells from reporter mouse embryos at E11.5 revealed that all variants were abundantly expressed in AER cells, and their expression was very low in mesenchymal cells. We then generated AER-specific p63 knockout mice by mating mice with a null and a flox allele of p63, and Msx2-Cre mice (Msx2-Cre;p63Δ/fl). Msx2-Cre;p63Δ/fl neonates showed limb malformation that was more obvious in distal elements. Expression of various AER-related genes was decreased in Msx2-Cre;p63Δ/fl limb buds and embryoid bodies formed by p63-knockdown induced pluripotent stem cells. Promoter analyses and chromatin immunoprecipitation assays demonstrated Fgf8 and Fgf4 as transcriptional targets of ΔNp63γ, and Jag2 as that of TAp63γ. Furthermore, TAp63γ overexpression exacerbated the phenotype of Msx2-Cre;p63Δ/fl mice. These data indicate that ΔNp63 and TAp63 control limb development through transcriptional regulation of different target molecules with different roles in the AER. Our findings contribute to further understanding of the molecular network of limb development.
巻・号 12(3)
ページ e0174122
公開日 2017-3-23
DOI 10.1371/journal.pone.0174122
PII PONE-D-17-03937
PMID 28333962
PMC PMC5363923
MeSH Animals Animals, Newborn Fibroblast Growth Factor 4 / physiology Fibroblast Growth Factor 8 / physiology Gene Expression Regulation, Developmental / physiology Limb Buds / growth & development* Limb Buds / physiology Mice / embryology Mice, Inbred C57BL Mice, Knockout Phosphoproteins / genetics Phosphoproteins / physiology* Real-Time Polymerase Chain Reaction Trans-Activators / genetics Trans-Activators / physiology*
IF 2.74
引用数 0
リソース情報
ヒト・動物細胞 B16 melanoma(RCB1283)