RRC ID 53132
著者 Lim AS, Jeong HJ, Ok JH, Kim SJ.
タイトル Feeding by the harmful phototrophic dinoflagellate Takayama tasmanica (Family Kareniaceae).
ジャーナル Harmful Algae
Abstract The trophic mode of a phototrophic dinoflagellate is a critical factor in the dynamics of its harmful algal bloom. Recent discoveries of the mixotrophic capabilities of phototrophic dinoflagellates have changed the traditional view of bloom dynamics and prediction models. Here, mixotrophy in the harmful phototrophic dinoflagellate Takayama tasmanica was examined. Moreover, growth and ingestion rates of T. tasmanica on each of Alexandrium minutum CCMP1888 and Alexandrium tamarense CCMP1493, suitable prey, were determined as a function of prey concentration. This study reported for the first time that T. tasmanica is a mixotrophic species. Among the phytoplankton species offered as prey, T. tasmanica fed on all prey species whose equivalent spherical diameter (ESD) was greater than 30 μm, but also A. minutum whose ESD was 19 μm. In contrast, T. tasmanica did not feed on the phototrophic dinoflagellates Heterocapsa triquetra, Gymnodinium aureolum, Scrippsiella acuminata (previously S. trochoidea), Cochlodinium polykrikoides, Alexandrium affine, Alexandrium insuetum, and Alexandrium pacificum that its sister species Takayama helix is able to feed on. With increasing mean prey concentration, ingestion rates of T. tasmanica on A. minutum increased, but became saturated at the prey concentrations of >2130 cells mL-1 (1070 ng C mL-1). The maximum ingestion rate (MIR) of T. tasmanica on A. minutum was 0.5 ng C predator-1 d-1 (1.0 cells predator-1 d-1) which is only 64% of the body carbon of a T. tasmanica cell. Growth rates of T. tasmanica on A. minutum were not affected by prey concentrations. Thus, the low maximum ingestion rate is likely to be responsible for the small increases of its growth rate through mixotrophy. In addition, neither growth nor ingestion rates of T. tasmanica feeding on Alexandrium tamarense were affected by prey concentrations. The maximum ingestion rate of T. tasmanica on A. minutum was considerably lower than that of T. helix on the same prey species. Therefore, the mixotrophic ability of T. tasmanica is weaker than that of T. helix, and also T. tasmanica may have an ecological niche different from that of T. helix in marine ecosystems.
巻・号 74
ページ 19-29
公開日 2018-4-1
DOI 10.1016/j.hal.2018.03.009
PII S1568-9883(18)30041-6
PMID 29724340
MeSH Dinoflagellida / physiology* Food Chain* Harmful Algal Bloom* Phytoplankton*
IF 5.012
引用数 6
リソース情報
藻類 NIES-2411