RRC ID 54187
著者 Watanabe J, Uehara K, Mogi Y, Tsukioka Y.
タイトル Mechanism for Restoration of Fertility in Hybrid Zygosaccharomyces rouxii Generated by Interspecies Hybridization.
ジャーナル Appl Environ Microbiol
Abstract The mechanism of whole-genome duplication (WGD) in yeast has been intensively studied because it has a large impact on yeast evolution. WGD has shaped the genomic architecture of modern Saccharomyces cerevisiae; however, the mechanism for restoring fertility after interspecies hybridization, which would be involved in the process of WGD, has not been thoroughly elucidated. In this study, we obtained a draft genome sequence of the salt-tolerant yeast Zygosaccharomyces rouxii NBRC110957 and revealed that it is a hybrid lineage of Z. rouxii (allodiploid) with two subgenomes equivalent to NBRC1876. Because this allodiploid yeast can mate with other allodiploid strains and form spores, it can be a good model of restoring fertility after interspecies hybridization. We observed that NBRC110957 and NBRC1876 contain six mating-type-like (MTL) loci. There are no large deletions or deleterious mutations in MTL loci, except for several-base-pair deletions in the X region in certain MTL loci. We also assigned only one mating-type (MAT) locus that exclusively determines mating types from six MTL loci. These results suggest that it is possible to recover mating competence regardless of whether cells lose one MAT locus through random gene loss by mitotically dividing after interspecies hybridization. Moreover, we propose that perturbation of gene expression and substantial breakdown of MAT heterozygosity caused by chromosomal rearrangement at MTL loci play roles in restoring the mating competence of allodiploids. This scenario can provide a mechanism for restoring fertility after interspecies hybridization that is compatible with random gene loss models and suggests genomic plasticity during WGD in yeast.IMPORTANCE A whole-genome duplication occurred in an ancestor of the baker's yeast Saccharomyces cerevisiae The origins of this complex and multifaceted process, which requires intra- or interspecies hybridization followed by dysfunction of one mating-type (MAT) locus to regain mating competence, has not been thoroughly elucidated. In this study, we provide a mechanism for regaining fertility in an interspecies hybrid, Zygosaccharomyces rouxii The draft genome sequence analysis and mating test showed that the Z. rouxii strain used in this study is an intact interspecies hybrid, suggesting that it is possible to recover fertility regardless of whether cells lose one MAT locus.
巻・号 83(21)
公開日 2017-11-1
DOI 10.1128/AEM.01187-17
PII AEM.01187-17
PMID 28842546
PMC PMC5648902
MeSH Diploidy Fungal Proteins / genetics Fungal Proteins / metabolism Gene Expression Regulation, Fungal Genes, Mating Type, Fungal Hybridization, Genetic* Zygosaccharomyces / genetics Zygosaccharomyces / physiology*
IF 4.016
引用数 11
リソース情報
一般微生物 JCM 22060