RRC ID 55085
著者 Sakanaka M, Nakakawaji S, Nakajima S, Fukiya S, Abe A, Saburi W, Mori H, Yokota A.
タイトル A Transposon Mutagenesis System for Bifidobacterium longum subsp. longum Based on an IS3 Family Insertion Sequence, ISBlo11.
ジャーナル Appl Environ Microbiol
Abstract Bifidobacteria are a major component of the intestinal microbiota in humans, particularly breast-fed infants. Therefore, elucidation of the mechanisms by which these bacteria colonize the intestine is desired. One approach is transposon mutagenesis, a technique currently attracting much attention because, in combination with next-generation sequencing, it enables exhaustive identification of genes that contribute to microbial fitness. We now describe a transposon mutagenesis system for Bifidobacterium longum subsp. longum 105-A (JCM 31944) based on ISBlo11, a native IS3 family insertion sequence. To build this system, xylose-inducible or constitutive bifidobacterial promoters were tested to drive the expression of full-length or a truncated form at the N terminus of the ISBlo11 transposase. An artificial transposon plasmid, pBFS12, in which ISBlo11 terminal inverted repeats are separated by a 3-bp spacer, was also constructed to mimic the transposition intermediate of IS3 elements. The introduction of this plasmid into a strain expressing transposase resulted in the insertion of the plasmid with an efficiency of >103 CFU/μg DNA. The plasmid targets random 3- to 4-bp sequences, but with a preference for noncoding regions. This mutagenesis system also worked at least in B. longum NCC2705. Characterization of a transposon insertion mutant revealed that a putative α-glucosidase mediates palatinose and trehalose assimilation, demonstrating the suitability of transposon mutagenesis for loss-of-function analysis. We anticipate that this approach will accelerate functional genomic studies of B. longum subsp. longumIMPORTANCE Several hundred species of bacteria colonize the mammalian intestine. However, the genes that enable such bacteria to colonize and thrive in the intestine remain largely unexplored. Transposon mutagenesis, combined with next-generation sequencing, is a promising tool to comprehensively identify these genes but has so far been applied only to a small number of intestinal bacterial species. In this study, a transposon mutagenesis system was established for Bifidobacterium longum subsp. longum, a representative health-promoting Bifidobacterium species. The system enables the identification of genes that promote colonization and survival in the intestine and should help illuminate the physiology of this species.
巻・号 84(17)
公開日 2018-9-1
DOI 10.1128/AEM.00824-18
PII AEM.00824-18
PMID 29934330
PMC PMC6102999
MeSH Bifidobacterium longum / genetics* DNA Transposable Elements / genetics* Gastrointestinal Microbiome / genetics* Genome, Bacterial / genetics Humans Intestines / microbiology Isomaltose / analogs & derivatives Isomaltose / metabolism Mutagenesis / genetics* Plasmids / genetics* Sequence Analysis, DNA Transposases / genetics Trehalose / metabolism alpha-Glucosidases / genetics
IF 4.077
引用数 2
リソース情報
一般微生物 JCM 31944 JCM 7004 JCM 1217 JCM 1222