RRC ID 57813
Author Panina Y, Germond A, David BG, Watanabe TM.
Title Pairwise efficiency: a new mathematical approach to qPCR data analysis increases the precision of the calibration curve assay.
Journal BMC Bioinformatics
Abstract BACKGROUND:The real-time quantitative polymerase chain reaction (qPCR) is routinely used for quantification of nucleic acids and is considered the gold standard in the field of relative nucleic acid measurements. The efficiency of the qPCR reaction is one of the most important parameters in data analysis in qPCR experiments. The Minimum Information for publication of Quantitative real-time PCR Experiments (MIQE) guidelines recommends the calibration curve as the method of choice for estimation of qPCR efficiency. The precision of this method has been reported to be between SD = 0.007 (three replicates) and SD = 0.022 (no replicates).
RESULTS:In this article, we present a novel approach to the analysis of qPCR data which has been obtained by running a dilution series. Unlike previously developed methods, our method, Pairwise Efficiency, involves a new formula that describes pairwise relationships between data points on separate amplification curves and thus enables extensive statistics. The comparison of Pairwise Efficiency with the calibration curve by Monte Carlo simulation shows the two-folds improvement in the precision of estimations of efficiency and gene expression ratios on the same dataset.
CONCLUSIONS:The Pairwise Efficiency nearly doubles the precision in qPCR efficiency determinations compared to standard calibration curve method. This paper demonstrates that applications of combinatorial treatment of data provide the improvement of the determination.
Volume 20(1)
Pages 295
Published 2019-5-30
DOI 10.1186/s12859-019-2911-5
PII 10.1186/s12859-019-2911-5
PMID 31146686
PMC PMC6543629
MeSH Animals Calibration Cell Line Data Analysis Indicator Dilution Techniques Mice Monte Carlo Method Real-Time Polymerase Chain Reaction / methods*
IF 3.242
Times Cited 1
Resource
Human and Animal Cells E14tg2a(AES0135)