RRC ID 64271
Author Ding DQ, Matsuda A, Okamasa K, Hiraoka Y.
Title Linear elements are stable structures along the chromosome axis in fission yeast meiosis.
Journal Chromosoma
Abstract The structure of chromosomes dramatically changes upon entering meiosis to ensure the successful progression of meiosis-specific events. During this process, a multilayer proteinaceous structure called a synaptonemal complex (SC) is formed in many eukaryotes. However, in the fission yeast Schizosaccharomyces pombe, linear elements (LinEs), which are structures related to axial elements of the SC, form on the meiotic cohesin-based chromosome axis. The structure of LinEs has been observed using silver-stained electron micrographs or in immunofluorescence-stained spread nuclei. However, the fine structure of LinEs and their dynamics in intact living cells remain to be elucidated. In this study, we performed live cell imaging with wide-field fluorescence microscopy as well as 3D structured illumination microscopy (3D-SIM) of the core components of LinEs (Rec10, Rec25, Rec27, Mug20) and a linE-binding protein Hop1. We found that LinEs form along the chromosome axis and elongate during meiotic prophase. 3D-SIM microscopy revealed that Rec10 localized to meiotic chromosomes in the absence of other LinE proteins, but shaped into LinEs only in the presence of all three other components, the Rec25, Rec27, and Mug20. Elongation of LinEs was impaired in double-strand break-defective rec12- cells. The structure of LinEs persisted after treatment with 1,6-hexanediol and showed slow fluorescence recovery from photobleaching. These results indicate that LinEs are stable structures resembling axial elements of the SC.
Published 2021-4-7
DOI 10.1007/s00412-021-00757-w
PII 10.1007/s00412-021-00757-w
PMID 33825974
IF 3.442
Yeast FY16786 FY16787