RRC ID 65958
著者 Yuzawa T, Matsuoka M, Sumitani M, Aoki F, Sezutsu H, Suzuki MG.
タイトル Transgenic and knockout analyses of Masculinizer and doublesex illuminated the unique functions of doublesex in germ cell sexual development of the silkworm, Bombyx mori.
ジャーナル BMC Dev Biol
Abstract BACKGROUND:Masculinizer (Masc) plays a pivotal role in male sex determination in the silkworm, Bombyx mori. Masc is required for male-specific splicing of B. mori doublesex (Bmdsx) transcripts. The male isoform of Bmdsx (BmdsxM) induces male differentiation in somatic cells, while females express the female isoform of Bmdsx (BmdsxF), which promotes female differentiation in somatic cells. Our previous findings suggest that Masc could direct the differentiation of genetically female (ZW) germ cells into sperms. However, it remains unclear whether Masc directly induces spermatogenesis or if it promotes male differentiation in germ cells indirectly by inducing the expression of BmdsxM.
RESULTS:In this study, we performed genetic analyses using the transgenic line that expressed Masc, as well as various Bmdsx knockout lines. We found that Masc-expressing females with a homozygous mutation in BmdsxM showed normal development in ovaries. The formation of testis-like tissues was abolished in these females. On the other hand, Masc-expressing females carrying a homozygous mutation in BmdsxF exhibited almost complete male-specific development in gonads and germ cells. These results suggest that BmdsxM has an ability to induce male development in germ cells as well as internal genital organs, while BmdsxF inhibits BmdsxM activity and represses male differentiation. To investigate whether MASC directly controls male-specific splicing of Bmdsx and identify RNAs that form complexes with MASC in testes, we performed RNA immunoprecipitation (RIP) using an anti-MASC antibody. We found that MASC formed a complex with AS1 lncRNA, which is a testis-specific factor involved in the male-specific splicing of Bmdsx pre-mRNA.
CONCLUSIONS:Taken together, our findings suggest that Masc induces male differentiation in germ cells by enhancing the production of BmdsxM. Physical interaction between MASC and AS1 lncRNA may be important for the BmdsxM expression in the testis. Unlike in the Drosophila dsx, BmdsxM was able to induce spermatogenesis in genetically female (ZW) germ cells. To the best of our knowledge, this is the first report that the role of dsx in germ cell sexual development is different between insect species.
巻・号 20(1)
ページ 19
公開日 2020-9-21
DOI 10.1186/s12861-020-00224-2
PII 10.1186/s12861-020-00224-2
PMID 32957956
PMC PMC7504827
MeSH Alternative Splicing Animals Animals, Genetically Modified Bombyx / genetics Bombyx / growth & development* Female Gametogenesis / genetics Gene Expression Regulation, Developmental Germ Cells / growth & development* Germ Cells / metabolism Gonads / growth & development Gonads / metabolism Insect Proteins / genetics Insect Proteins / metabolism* Male Protein Isoforms RNA, Long Noncoding / genetics RNA, Long Noncoding / metabolism Sex Differentiation / genetics* Species Specificity
IF 2.0
リソース情報
カイコ