RRC ID 67081
著者 Liu T, Han Y, Yu C, Ji Y, Wang C, Chen X, Wang X, Shen J, Zhang Y, Lang JY.
タイトル MYC predetermines the sensitivity of gastrointestinal cancer to antifolate drugs through regulating TYMS transcription.
ジャーナル EBioMedicine
Abstract BACKGROUND:Thymidylate synthase (TYMS) is a successful chemotherapeutic target for anticancer therapy. Numerous TYMS inhibitors have been developed and used for treating gastrointestinal cancer now, but they have limited clinical benefits due to the prevalent unresponsiveness and toxicity. It is urgent to identify a predictive biomarker to guide the precise clinical use of TYMS inhibitors.
METHODS:Genome-scale CRISPR-Cas9 knockout screening was performed to identify potential therapeutic targets for treating gastrointestinal tumours as well as key regulators of raltitrexed (RTX) sensitivity. Cell-based functional assays were used to investigate how MYC regulates TYMS transcription. Cancer patient data were used to verify the correlation between drug response and MYC and/or TYMS mRNA levels. Finally, the role of NIPBL inactivation in gastrointestinal cancer was evaluated in vitro and in vivo.
FINDINGS:TYMS is essential for maintaining the viability of gastrointestinal cancer cells, and is selectively inhibited by RTX. Mechanistically, MYC presets gastrointestinal cancer sensitivity to RTX through upregulating TYMS transcription, supported by TCGA data showing that complete response cases to TYMS inhibitors had significantly higher MYC and TYMS mRNA levels than those of progressive diseases. NIPBL inactivation decreases the therapeutic responses of gastrointestinal cancer to RTX through blocking MYC.
INTERPRETATION:Our study unveils a mechanism of how TYMS is transcriptionally regulated by MYC, and provides rationales for the precise use of TYMS inhibitors in the clinic.
FUNDING:This work was financially supported by grants of NKRDP (2016YFC1302400), STCSM (16JC1406200), NSFC (81872890, 81322034, 81372346) and CAS (QYZDB-SSW-SMC034, XDA12020210).
巻・号 48
ページ 289-300
公開日 2019-10-1
DOI 10.1016/j.ebiom.2019.10.003
PII S2352-3964(19)30667-X
PMID 31648989
PMC PMC6838448
MeSH Cell Line, Tumor Dose-Response Relationship, Drug Drug Resistance / genetics* Folic Acid Antagonists / pharmacology* Gastrointestinal Neoplasms / genetics* Gastrointestinal Neoplasms / metabolism Gene Expression Regulation, Neoplastic* Genes, myc* Humans Thymidylate Synthase / antagonists & inhibitors Thymidylate Synthase / genetics* Thymidylate Synthase / metabolism Transcription, Genetic
IF 5.736
リソース情報
ヒト・動物細胞 GSU(RCB2278)