RRC ID 71547
Author Li X, Sun J, Zhang M, Xue X, Wu Q, Yang W, Yin Z, Zhou D, Lu R, Zhang Y.
Title The Effect of Salinity on Biofilm Formation and c-di-GMP Production in Vibrio parahaemolyticus.
Journal Curr Microbiol
Abstract Vibrio parahaemolyticus is a moderately halophilic, salt-requiring organism that exhibits optimal growth at approximately 3% salt. Thus, salinity stress is one of the most important stimuli during its lifecycle. The bacterium possesses a strong ability to form biofilms on surfaces, which are thought to be involved in protecting it from adverse environmental conditions. In the present study, salinity-dependent biofilm formation by V. parahaemolyticus was investigated by combining crystal violet staining, colony morphology, intracellular c-di-GMP quantification and quantitative PCR. The results showed that biofilm formation by V. parahaemolyticus was significantly enhanced in low salinity growth conditions and was affected by incubation time. In addition, low salinity reduced intracellular c-di-GMP degradation in V. parahaemolyticus. Transcription of genes encoding ScrABC and ScrG proteins, which are involved in intracellular c-di-GMP metabolism, was inhibited by low salinity growth conditions. Thus, reduced intracellular c-di-GMP degradation in V. parahaemolyticus in low salinity growth conditions may be mediated by repression of scrG and scrABC transcription. Taken together, these results demonstrated for the first time that salinity regulates biofilm formation and c-di-GMP production in V. parahaemolyticus.
Volume 79(1)
Pages 25
Published 2021-12-14
DOI 10.1007/s00284-021-02723-2
PII 10.1007/s00284-021-02723-2
PMID 34905101
MeSH Bacterial Proteins / genetics Bacterial Proteins / metabolism Biofilms Cyclic GMP / analogs & derivatives Gene Expression Regulation, Bacterial Salinity Vibrio parahaemolyticus* / genetics Vibrio parahaemolyticus* / metabolism
IF 1.746
Resource
Pathogenic bacteria Vibrio parahaemolyticus RIMD 2210633