RRC ID 7179
Author Sato Y, Antonio B, Namiki N, Motoyama R, Sugimoto K, Takehisa H, Minami H, Kamatsuki K, Kusaba M, Hirochika H, Nagamura Y.
Title Field transcriptome revealed critical developmental and physiological transitions involved in the expression of growth potential in japonica rice.
Journal BMC Plant Biol.
Abstract BACKGROUND:Plant growth depends on synergistic interactions between internal and external signals, and yield potential of crops is a manifestation of how these complex factors interact, particularly at critical stages of development. As an initial step towards developing a systems-level understanding of the biological processes underlying the expression of overall agronomic potential in cereal crops, a high-resolution transcriptome analysis of rice was conducted throughout life cycle of rice grown under natural field conditions.
RESULTS:A wide range of gene expression profiles based on 48 organs and tissues at various developmental stages identified 731 organ/tissue specific genes as well as 215 growth stage-specific expressed genes universally in leaf blade, leaf sheath, and root. Continuous transcriptome profiling of leaf from transplanting until harvesting further elucidated the growth-stage specificity of gene expression and uncovered two major drastic changes in the leaf transcriptional program. The first major change occurred before the panicle differentiation, accompanied by the expression of RFT1, a putative florigen gene in long day conditions, and the downregulation of the precursors of two microRNAs. This transcriptome change was also associated with physiological alterations including phosphate-homeostasis state as evident from the behavior of several key regulators such as miR399. The second major transcriptome change occurred just after flowering, and based on analysis of sterile mutant lines, we further revealed that the formation of strong sink, i.e., a developing grain, is not the major cause but is rather a promoter of this change.
CONCLUSIONS:Our study provides not only the genetic basis for functional genomics in rice but also new insight into understanding the critical physiological processes involved in flowering and seed development, that could lead to novel strategies for optimizing crop productivity.
Volume 11
Pages 10
Published 2011-1-12
DOI 10.1186/1471-2229-11-10
PII 1471-2229-11-10
PMID 21226959
PMC PMC3031230
MeSH Circadian Rhythm / genetics Cluster Analysis Gene Expression Profiling* Gene Expression Regulation, Developmental* Gene Expression Regulation, Plant* Organ Specificity / genetics Oryza / genetics* Oryza / growth & development Oryza / physiology* Photosynthesis / genetics Plant Infertility / genetics Pollen / genetics Reproduction / genetics Seeds / genetics Transcription Factors / genetics Transcription Factors / metabolism Up-Regulation / genetics
IF 3.93
Times Cited 55
Rice 不稔系統