RRC ID 73529
著者 Xu L, Niu X, Liu Y, Liu L.
タイトル ST3GAL3 Promotes the Inflammatory Response of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis by Activating the TLR9/MyD88 Pathway.
ジャーナル Mediators Inflamm
Abstract This study is aimed at investigating the role of β-galactoside-α2,3-sialyltransferase III (ST3GAL3) in fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA), as well as its potential mechanism of action. The Gene Expression Omnibus (GEO) database and gene set enrichment analysis (GSEA) were used to analyse the expression of ST3GAL3 and the enrichment signalling pathways associated with ST3GAL3 in RA. The effects of ST3GAL3 on tumour necrosis factor- (TNF-) α and interleukin- (IL-) 1β-treated MH7A cells were determined using methyl thiazolyl tetrazolium (MTT), transwell, and enzyme-linked immunosorbent assays (ELISA). The expression of proliferation-associated proteins and Toll-like receptor (TLR) pathway-enriched proteins was analysed using western blotting. As a main result, ST3GAL3 was screened as an overlapping upregulated gene from GSE101193 and GSE94519 datasets. ST3GAL3 expression in MH7A cells significantly increased with increasing treatment time with TNF-α or IL-1β. TLR9/myeloid differentiation primary response protein 88 (MyD88) is a downstream activation pathway of ST3GAL3. ST3GAL3 overexpression promoted MH7A cell proliferation and migration. Additionally, ST3GAL3 overexpression upregulated the expression of proliferation-associated proteins (cyclinD, cyclinE, and proliferating cell nuclear antigen) and TLR pathway enrichment factors (TLR9 and MyD88) and increased the production of matrix metallopeptidase (MMP) 1, MMP3, interleukin- (IL-) 6, and IL-8, whereas si-ST3GAL3 had the opposite effect. The addition of TLR9 agonists (CpG 2216 and CpG 2006) reversed the effects of si-ST3GAL3 on MH7A cell proliferation, migration, and inflammation. TLR9-specific siRNA reversed the effects of ST3GAL3 overexpression on MH7A cell proliferation, migration, and inflammation. In conclusion, ST3GAL3 is likely involved in RA pathogenesis by activating the TLR9/MyD88 pathway.
巻・号 2022
ページ 4258742
公開日 2022-1-1
DOI 10.1155/2022/4258742
PMID 36405992
PMC PMC9671737
MeSH Adaptor Proteins, Signal Transducing / metabolism Arthritis, Rheumatoid* / metabolism Fibroblasts / metabolism Humans Inflammation / metabolism Interleukins / metabolism Myeloid Differentiation Factor 88 / metabolism Synoviocytes* / metabolism Toll-Like Receptor 9 / metabolism Tumor Necrosis Factor-alpha / metabolism
IF 3.758
リソース情報
ヒト・動物細胞 MH7A(RCB1512)