RRC ID 74292
Author Pope NS, Singh A, Childers AK, Kapheim KM, Evans JD, López-Uribe MM.
Title The expansion of agriculture has shaped the recent evolutionary history of a specialized squash pollinator.
Journal Proc Natl Acad Sci U S A
Abstract The expansion of agriculture is responsible for the mass conversion of biologically diverse natural environments into managed agroecosystems dominated by a handful of genetically homogeneous crop species. Agricultural ecosystems typically have very different abiotic and ecological conditions from those they replaced and create potential niches for those species that are able to exploit the abundant resources offered by crop plants. While there are well-studied examples of crop pests that have adapted into novel agricultural niches, the impact of agricultural intensification on the evolution of crop mutualists such as pollinators is poorly understood. We combined genealogical inference from genomic data with archaeological records to demonstrate that the Holocene demographic history of a wild specialist pollinator of Cucurbita (pumpkins, squashes, and gourds) has been profoundly impacted by the history of agricultural expansion in North America. Populations of the squash bee Eucera pruinosa experienced rapid growth in areas where agriculture intensified within the past 1,000 y, suggesting that the cultivation of Cucurbita in North America has increased the amount of floral resources available to these bees. In addition, we found that roughly 20% of this bee species' genome shows signatures of recent selective sweeps. These signatures are overwhelmingly concentrated in populations from eastern North America where squash bees were historically able to colonize novel environments due to human cultivation of Cucurbita pepo and now exclusively inhabit agricultural niches. These results suggest that the widespread cultivation of crops can prompt adaptation in wild pollinators through the distinct ecological conditions imposed by agricultural environments.
Volume 120(15)
Pages e2208116120
Published 2023-4-3
DOI 10.1073/pnas.2208116120
PMID 37011184
MeSH Agriculture Animals Bees Crops, Agricultural Cucurbita* / genetics Ecosystem Humans Pollination
IF 9.412
Resource
GBIF Plant Specimen Database of Tama Forest Science Garden, Forestry and Forest Products Research Institute, Japan