RRC ID 74349
Author Kamiyanagi M, Taninaka A, Ugajin S, Nagoshi Y, Kurokawa H, Ochiai T, Arashida Y, Takeuchi O, Matsui H, Shigekawa H.
Title Cell-Level Analysis Visualizing Photodynamic Therapy with Porphylipoprotein and Talaporphyrin Sodium.
Journal Int J Mol Sci
Abstract We revealed the difference in the mechanism of photodynamic therapy (PDT) between two photosensitizers: porphylipoprotein (PLP), which has recently attracted attention for its potential to be highly effective in treating cancer, and talaporphyrin sodium (NPe6). (1) NPe6 accumulates in lysosomes, whereas PLP is incorporated into phagosomes formed by PLP injection. (2) PDT causes NPe6 to generate reactive oxygen species, thereby producing actin filaments and stress fibers. In the case of PLP, however, reactive oxygen species generated by PDT remain in the phagosomes until the phagosomal membrane is destroyed, which delays the initiation of RhoA activation and RhoA*/ROCK generation. (4) After the disruption of the phagosomal membrane, however, the outflow of various reactive oxygen species accelerates the production of actin filaments and stress fibers, and blebbing occurs earlier than in the case of NPe6. (5) PLP increases the elastic modulus of cells without RhoA activity in the early stage. This is because phagosomes are involved in polymerizing actin filaments and pseudopodia formation. Considering the high selectivity and uptake of PLP into cancer cells, a larger effect with PDT can be expected by skillfully combining the newly discovered characteristics, such as the appearance of a strong effect at an early stage.
Volume 23(21)
Published 2022-10-28
DOI 10.3390/ijms232113140
PII ijms232113140
PMID 36361927
PMC PMC9655257
MeSH Photochemotherapy* Photosensitizing Agents / therapeutic use Porphyrins* / pharmacology Reactive Oxygen Species Sodium
IF 4.556
Human and Animal Cells RGM1(RCB0876)