RRC ID 74433
著者 Matsui Y, Takemura N, Shirasaki Y, Takahama M, Noguchi Y, Ikoma K, Pan Y, Nishida S, Taura M, Nakayama A, Funatsu T, Misawa T, Harada Y, Sunazuka T, Saitoh T.
タイトル Nanaomycin E inhibits NLRP3 inflammasome activation by preventing mitochondrial dysfunction.
ジャーナル Int Immunol
Abstract Nod-like receptor family pyrin domain-containing 3 (NLRP3) is a cytosolic innate immune receptor that senses organelle dysfunction induced by various stimuli, such as infectious, environmental, metabolic and drug stresses. Upon activation, NLRP3 forms an inflammasome with its adaptor protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and caspase-1, to trigger the release of inflammatory cytokines. The development of effective anti-inflammatory drugs targeting the NLRP3 inflammasome is in high demand as its aberrant activation often causes inflammatory diseases. Here, we found that nanaomycin A (NNM-A), a quinone-based antibiotic isolated from Streptomyces, effectively inhibited NLRP3 inflammasome-mediated inflammatory responses induced by imidazoquinolines, including imiquimod. Interestingly, its epoxy derivative nanaomycin E (NNM-E) showed a comparable inhibitory effect against the NLRP3 inflammasome-induced release of interleukin (IL)-1β and IL-18 from macrophages, with a much lower toxicity than NNM-A. NNM-E inhibited ASC oligomerization and caspase-1 cleavage, both of which are hallmarks of NLRP3 inflammasome activation. NNM-E reduced mitochondrial damage and the production of reactive oxygen species, thereby preventing the activation of the NLRP3 inflammasome. NNM-E treatment markedly alleviated psoriasis-like skin inflammation induced by imiquimod. Collectively, NNM-E inhibits NLRP3 inflammasome activation by preventing mitochondrial dysfunction with little toxicity and showed an anti-inflammatory effect in vivo. Thus, NNM-E could be a potential lead compound for developing effective and safe anti-inflammatory agents for the treatment of NLRP3 inflammasome-mediated inflammatory diseases.
巻・号 34(10)
ページ 505-518
公開日 2022-9-9
DOI 10.1093/intimm/dxac028
PII 6618702
PMID 35759801
MeSH Caspase 1 / metabolism Imiquimod / metabolism Imiquimod / pharmacology Inflammasomes* Interleukin-1beta / metabolism Mitochondria / metabolism NLR Family, Pyrin Domain-Containing 3 Protein* Naphthoquinones
IF 3.519
リソース情報
ヒト・動物細胞 J774.1