RRC ID 74521
著者 Kobayashi T, Kishimoto S, Watanabe S, Yoshioka Y, Toyoda T, Ogawa K, Watanabe K, Totsuka Y, Wakabayashi K, Miyoshi N.
タイトル Cytotoxic Homo- and Hetero-Dimers of o-toluidine, o-anisidine, and Aniline Formed by In Vitro Metabolism.
ジャーナル Chem Res Toxicol
Abstract Several aromatic amine compounds are urinary bladder carcinogens. Activated metabolites and DNA adducts of polycyclic aromatic amines, such as 4-aminobiphenyl, have been identified, whereas those of monocyclic aromatic amines, such as o-toluidine (o-Tol), o-anisidine (o-Ans), and aniline (Ani), have not been completely determined. We have recently reported that o-Tol and o-Ans are metabolically converted in vitro and in vivo to cytotoxic and mutagenic p-semidine-type dimers, namely 2-methyl-N4-(2-methylphenyl) benzene-1,4-diamine (MMBD) and 2-methoxy-N4-(2-methoxyphenyl) benzene-1,4-diamine (MxMxBD), respectively, suggesting their roles in urinary bladder carcinogenesis. In this study, we found that when o-Tol and o-Ans were incubated with S9 mix, MMBD and MxMxBD as well as two isomeric heterodimers, MMxBD and MxMBD, were formed. Therefore, any two of o-Tol, o-Ans, and Ani (10 mM each) were incubated with the S9 mix for up to 24 h and then subjected to LC-MS to investigate their metabolic kinetics. Metabolic conversions to all nine kinds of p-semidine-type homo- and hetero-dimers were observed, peaking at 6 h of incubation with the S9 mix; MxMxBD reached the peak at 6.1 ± 1.4 μM. Homo- and hetero-dimers containing the o-Ans moiety in the diamine structure showed a faster dimerization ratio, whereas levels of these dimers, such as MxMxBD, markedly declined with further incubation. Dimers containing o-Tol and Ani were relatively stable, even after incubation for 24 h. The electron-donating group of the o-Ans moiety may be involved in rapid metabolic conversion. In the cytotoxic assay, dimers with an o-Ans moiety in the diamine structure and MMBD showed approximately two- to four-fold higher cytotoxicity than other dimers in human bladder cancer T24 cells. These chemical and biological properties of homo- and hetero-dimers of monocyclic aromatic amines may be important when considering the combined exposure risk for bladder carcinogenesis.
巻・号 35(9)
ページ 1625-1630
公開日 2022-9-19
DOI 10.1021/acs.chemrestox.2c00226
PMID 36001821
MeSH Amines Aniline Compounds / metabolism Benzene* Carcinogenesis Carcinogens / toxicity DNA Adducts* Humans Phenylenediamines Toluidines
IF 3.184
リソース情報
ヒト・動物細胞 T24(RCB2536)