RRC ID 78037
著者 Lee D, Yoon E, Ham SJ, Lee K, Jang H, Woo D, Lee DH, Kim S, Choi S, Chung J.
タイトル Diabetic sensory neuropathy and insulin resistance are induced by loss of UCHL1 in Drosophila.
ジャーナル Nat Commun
Abstract Diabetic sensory neuropathy (DSN) is one of the most common complications of type 2 diabetes (T2D), however the molecular mechanistic association between T2D and DSN remains elusive. Here we identify ubiquitin C-terminal hydrolase L1 (UCHL1), a deubiquitinase highly expressed in neurons, as a key molecule underlying T2D and DSN. Genetic ablation of UCHL1 leads to neuronal insulin resistance and T2D-related symptoms in Drosophila. Furthermore, loss of UCHL1 induces DSN-like phenotypes, including numbness to external noxious stimuli and axonal degeneration of sensory neurons in flies' legs. Conversely, UCHL1 overexpression improves DSN-like defects of T2D model flies. UCHL1 governs insulin signaling by deubiquitinating insulin receptor substrate 1 (IRS1) and antagonizes an E3 ligase of IRS1, Cullin 1 (CUL1). Consistent with these results, genetic and pharmacological suppression of CUL1 activity rescues T2D- and DSN-associated phenotypes. Therefore, our findings suggest a complete set of genetic factors explaining T2D and DSN, together with potential remedies for the diseases.
巻・号 15(1)
ページ 468
公開日 2024-1-11
DOI 10.1038/s41467-024-44747-9
PII 10.1038/s41467-024-44747-9
PMID 38212312
PMC PMC10784524
MeSH Animals Diabetes Mellitus, Type 2* / genetics Drosophila Insulin Resistance* / genetics Neurons Ubiquitin Thiolesterase / genetics
IF 12.121
リソース情報
ショウジョウバエ 7037R-1 1877R-1 7788R-1 HMS01553 3938R-2 5072R-3 GL00039 HMS00476 4006R-1 DGRC#108125 DGRC#108184