RRC ID 81301
Author Sasaki M, Yamamoto K, Ueda T, Irokawa H, Takeda K, Sekine R, Itoh F, Tanaka Y, Kuge S, Shibata N.
Title One-carbon metabolizing enzyme ALDH1L1 influences mitochondrial metabolism through 5-aminoimidazole-4-carboxamide ribonucleotide accumulation and serine depletion, contributing to tumor suppression.
Journal Sci Rep
Abstract Tumor cells generally require large amounts of nucleotides, and thus activate de novo purine synthesis (dnPS). In the dnPS reactions, 10-formyltetrahydorofolate (10-fTHF) supplied by one-carbon metabolism is utilized as a formyl group donor. We focused on aldehyde dehydrogenase 1 family member L1 (ALDH1L1), which metabolizes 10-fTHF to tetrahydrofolate and whose expression is often attenuated in hepatocellular carcinoma (HCC). We generated ALDH1L1-expressing HuH-7 cells to perform metabolome analysis and found that intracellular levels of serine were reduced and glycine was increased. In addition, 5-aminoimidazole-4-carboxamide ribonucleotide (ZMP), a dnPS intermediate, accumulated due to the consumption of 10-fTHF by ALDH1L1, which inhibited ZMP formylation. Importantly, ALDH1L1-expressing cells showed reduced ZMP sensitivity and higher mitochondrial activity. The suppression of mitochondrial serine catabolism by ALDH1L1 expression was speculated to be closely related to this phenotype. Gene set enrichment analysis utilizing The Cancer Genome Atlas data revealed that genes related to oxidative phosphorylation were enriched in HCC patients with high ALDH1L1 expression. Moreover, drug sensitivity data analysis demonstrated that HCC cell lines with low expression of ALDH1L1 were sensitive to ZMP and cordycepin, a structural analog of ZMP and AMP. Our study revealed that ZMP and AMP analogs might be effective in the pharmacotherapy of HCC patients with low expression of ALDH1L1.
Volume 13(1)
Pages 13486
Published 2023-8-18
DOI 10.1038/s41598-023-38142-5
PII 10.1038/s41598-023-38142-5
PMID 37596270
PMC PMC10439146
MeSH Carbon Carcinoma, Hepatocellular* / genetics Humans Liver Neoplasms* Ribonucleotides / pharmacology
Resource
DNA material CSII-CMV-MCS-IRES2-Bsd (RDB04385) pCMV-VSV-G-RSV-Rev (RDB04393) pCAG-HIVgp (RDB04394)