RRC ID 81647
Author Liu Z, Wu X, Liu H, Zhang M, Liao W.
Title DNA methylation in tomato fruit ripening.
Journal Physiol Plant
Abstract Fleshy fruit, the most economical and nutritional value unique to flowering plants, is an important part of our daily diet. Previous studies have shown that fruit ripening is regulated by transcription factors and the plant hormone ethylene, but recent research has also shown that epigenetics also plays an essential role, especially DNA methylation. DNA methylation is the process of transferring -CH3 to the fifth carbon of cytosine residues under the action of methyltransferase to form 5-methylcytosine (5-mC). So far, most works have been focused on tomato. Tomato ripening is dynamically regulated by DNA methylation and demethylation, but the understanding of this mechanism is still in its infancy. The dysfunction of a DNA demethylase, DEMETER-like DNA demethylases 2 (DML2), prevents the ripening of tomato fruits, but immature fruits ripen prematurely under the action of DNA methylation inhibitors. Additionally, studies have shown that the relationship between fruit quality and DNA methylation is not linear, but the specific molecular mechanism is still unclear. Here, we review the recent advances in the role of DNA methylation in tomato fruit ripening, the interaction of ripening transcription factors and DNA methylation, and its effects on quality. Then, a number of questions for future research of DNA methylation regulation in tomato fruit ripening is proposed.
Volume 174(1)
Pages e13627
Published 2022-1-1
DOI 10.1111/ppl.13627
PMID 35040145
MeSH DNA Methylation / genetics Ethylenes Fruit / physiology Gene Expression Regulation, Plant Plant Proteins / metabolism Solanum lycopersicum*
Resource
Tomato