RRC ID 1271
Author Shibata MA, Horiguchi T, Morimoto J, Otsuki Y.
Title Massive apoptotic cell death in chemically induced rat urinary bladder carcinomas following in situ HSVtk electrogene transfer.
Journal J Gene Med
Abstract BACKGROUND:Gene delivery in current gene therapy studies relies largely on recombinant viral vectors. However, the safety of this method is still under investigation. The effectiveness of in vivo electrogene transfer as a means of gene therapy for rat bladder cancers using the herpes simplex virus 1 thymidine kinase (HSVtk) gene in combination with ganciclovir (GCV) was therefore investigated.
METHODS:The killing effects of HSVtk/GCV therapy were evaluated in transitional cell carcinoma (TCC) cells in vitro and in vivo. In animal experiments, electrogene transfer of HSVtk into N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN)-induced rat bladder tumors was conducted followed by GCV administration.
RESULTS:In vitro studies demonstrated that approximately 50-70% of the TCC cells died as a result of transfection with pHSVtk and GCV administration and that this treatment was associated with decreased DNA synthesis and elevated activities of caspase-3, -8 and -9. A significantly decreased mitochondrial membrane potential was also noted in TCC cells given pHSV tk + GCV. A direct single injection of HSVtk into bladder tumors using in vivo electrogene transfer followed by GCV i.p. administration resulted in significant increases in the levels of apoptosis and histopathological necrosis accompanied by marked inflammation. Active caspase-3 was strongly expressed in the cell death areas of the TCC in rats given pHSVtk/GCV therapy.
CONCLUSIONS:In vivo electrogene transfer results in efficient gene transfer in BBN-induced rat bladder tumors and the HSVtk/GCV prodrug system induces significant cell death which appears to be, at least, mediated via the mitochondrial apoptotic pathway.
Volume 5(3)
Pages 219-31
Published 2003-3-1
DOI 10.1002/jgm.335
PMID 12666188
MeSH Animals Antiviral Agents / pharmacology* Apoptosis / drug effects* Carcinoma / physiopathology* Carcinoma / therapy Electroporation Female Ganciclovir / pharmacology* Gene Transfer Techniques Herpesvirus 1, Human / genetics Proto-Oncogene Proteins / genetics Proto-Oncogene Proteins c-bcl-2* Rats Rats, Inbred F344 Thymidine Kinase / genetics* Urinary Bladder Neoplasms / physiopathology* Urinary Bladder Neoplasms / therapy bcl-2-Associated X Protein
IF 3.258
Times Cited 22
Human and Animal Cells T24(RCB0431) MBT-2(RCB0544)