RRC ID 19255
Author Takahashi S, Yamazoe H, Sassa F, Suzuki H, Fukuda J.
Title Preparation of coculture system with three extracellular matrices using capillary force lithography and layer-by-layer deposition.
Journal J. Biosci. Bioeng.
Abstract Micropatterned cocultures were fabricated with 3 extracellular matrices, hyaluronic acid (HA), fibronectin, and collagen. The feature of the fabrication processes is to avoid the use of potentially cytotoxic materials and utilize capillary force of the solution and interactions between the extracellular matrix components. The coculture system can be used to investigate the effects of heterocellular interactions on cellular fate. Direct heterocellular connections between hepatocytes and fibroblasts were visualized by the transcellular diffusion of fluorescein in this coculture system. The interactions between hepatocytes and fibroblasts were crucial for the maintenance of albumin synthesis by hepatocytes. The coculture system was also beneficial for investigating the effects of cell-cell interactions on the induction of embryonic stem (ES) cell differentiation. In cocultures grown in a sea-island pattern, ES cells formed isolated colonies surrounded by PA6 cells and differentiated into neurons with branched neurites that extended from the colonies. This versatile and biocompatible coculture system could potentially be a powerful tool for investigating cell-cell interaction and for tissue engineering applications.
Volume 108(6)
Pages 544-50
Published 2009-12
DOI 10.1016/j.jbiosc.2009.06.013
PII S1389-1723(09)00292-8
PMID 19914591
MeSH Albumins / biosynthesis Animals Biocompatible Materials Cell Adhesion Cell Culture Techniques Cell Line Cell Survival Cells, Cultured Coculture Techniques / methods* Collagen / chemistry Embryonic Stem Cells / cytology Extracellular Matrix / chemistry* Fibroblasts / cytology Fibronectins / chemistry Hepatocytes / cytology Hepatocytes / physiology Hyaluronic Acid / chemistry Materials Testing Mice NIH 3T3 Cells Surface Properties Tissue Engineering
IF 2.015
Times Cited 14
Human and Animal Cells MC3T3-E1 (RCB1126)