RRC ID 35142
著者 Suzuki T, Sugiyama M, Wakazono K, Kaneko Y, Harashima S.
タイトル Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae.
ジャーナル J Biosci Bioeng
Abstract To gain more insight into adaptation response to lactic-acid stress in yeast, a genome-wide screening for genes whose disruption caused hypersensitivity to 4.0% l-lactic acid (pH 2.8) was performed using the gene deletion collection of Saccharomyces cerevisiae. We identified 107 genes that contributed significantly to the ability of yeast cells to adapt lactic-acid stress. More than 30% of the genes identified in this screening were newly identified to be involved in mechanisms for adaptation response to lactic acid. We found that protein urmylation by Uba4 and N-terminal acetylation by Nat3 were involved in lactic acid adaptation mechanisms. Functional categorization of the genes followed by microscopic analysis revealed that a variety of cellular functions were involved in adaptation response to lactic acid and function associated with vacuolar transport played important roles in adaptation response to lactic acid. We also found that vacuole fragmented immediately upon exposure to lactic- and hydrochloric-acid stress. In addition, our analysis revealed that lactic-acid stress significantly reduced the amount of intracellular amino acids. Amino acid supplementation recovered the adaptation deficiency to lactic acid, suggesting that intracellular amino-acid homeostasis plays important roles in adaptation response to lactic-acid stress. These data suggest that enhancing vacuolar integrity, as well as maintaining intracellular amino-acid homeostasis may be an efficient approach to confer resistance to lactic-acid stress.
巻・号 113(4)
ページ 421-30
公開日 2012-4-1
DOI 10.1016/j.jbiosc.2011.11.010
PII S1389-1723(11)00457-9
PMID 22177309
MeSH Adaptation, Physiological / genetics Amino Acids / metabolism Amino Acids / pharmacology Gene Deletion Gene Expression Profiling Gene Expression Regulation, Fungal Genome, Fungal / genetics Homeostasis / genetics Lactic Acid / pharmacology Saccharomyces cerevisiae / drug effects Saccharomyces cerevisiae / genetics Saccharomyces cerevisiae / metabolism Saccharomyces cerevisiae / physiology* Saccharomyces cerevisiae Proteins / genetics Saccharomyces cerevisiae Proteins / metabolism Stress, Physiological / genetics Vacuoles / drug effects Vacuoles / metabolism*
IF 2.366
引用数 12
WOS 分野 FOOD SCIENCE & TECHNOLOGY BIOTECHNOLOGY & APPLIED MICROBIOLOGY
リソース情報
酵母 NA