RRC ID 3981
Author Nonklang S, Abdel-Banat BM, Cha-aim K, Moonjai N, Hoshida H, Limtong S, Yamada M, Akada R.
Title High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042.
Journal Appl Environ Microbiol
Abstract We demonstrate herein the ability of Kluyveromyces marxianus to be an efficient ethanol producer and host for expressing heterologous proteins as an alternative to Saccharomyces cerevisiae. Growth and ethanol production by strains of K. marxianus and S. cerevisiae were compared under the same conditions. K. marxianus DMKU3-1042 was found to be the most suitable strain for high-temperature growth and ethanol production at 45 degrees C. This strain, but not S. cerevisiae, utilized cellobiose, xylose, xylitol, arabinose, glycerol, and lactose. To develop a K. marxianus DMKU3-1042 derivative strain suitable for genetic engineering, a uracil auxotroph was isolated and transformed with a linear DNA of the S. cerevisiae ScURA3 gene. Surprisingly, Ura(+) transformants were easily obtained. By Southern blot hybridization, the linear ScURA3 DNA was found to have inserted randomly into the K. marxianus genome. Sequencing of one Lys(-) transformant confirmed the disruption of the KmLYS1 gene by the ScURA3 insertion. A PCR-amplified linear DNA lacking K. marxianus sequences but containing an Aspergillus alpha-amylase gene under the control of the ScTDH3 promoter together with an ScURA3 marker was subsequently used to transform K. marxianus DMKU3-1042 in order to obtain transformants expressing Aspergillus alpha-amylase. Our results demonstrate that K. marxianus DMKU3-1042 can be an alternative cost-effective bioethanol producer and a host for transformation with linear DNA by use of S. cerevisiae-based molecular genetic tools.
Volume 74(24)
Pages 7514-21
Published 2008-12-1
DOI 10.1128/AEM.01854-08
PII AEM.01854-08
PMID 18931291
PMC PMC2607150
MeSH Base Sequence Blotting, Southern Carbohydrate Metabolism DNA, Fungal / genetics Ethanol / metabolism* Fermentation* Fungal Proteins / genetics Hot Temperature* Kluyveromyces / genetics* Kluyveromyces / growth & development Kluyveromyces / metabolism* Kluyveromyces / radiation effects Molecular Sequence Data Recombination, Genetic Saccharomyces cerevisiae / growth & development Saccharomyces cerevisiae / metabolism Sequence Alignment Transformation, Genetic* alpha-Amylases / genetics
IF 4.016
Times Cited 121
WOS Category BIOTECHNOLOGY & APPLIED MICROBIOLOGY MICROBIOLOGY
Resource
Yeast