RRC ID 44581
著者 Yanagida A, Ito K, Chikada H, Nakauchi H, Kamiya A.
タイトル An in vitro expansion system for generation of human iPS cell-derived hepatic progenitor-like cells exhibiting a bipotent differentiation potential.
ジャーナル PLoS One
Abstract Hepatoblasts, hepatic stem/progenitor cells in liver development, have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In regenerative medicine and drug screening for the treatment of severe liver diseases, human induced pluripotent stem (iPS) cell-derived mature functional hepatocytes are considered to be a potentially good cell source. However, induction of proliferation of these cells is difficult ex vivo. To circumvent this problem, we generated hepatic progenitor-like cells from human iPS cells using serial cytokine treatments in vitro. Highly proliferative hepatic progenitor-like cells were purified by fluorescence-activated cell sorting using antibodies against CD13 and CD133 that are known cell surface markers of hepatic stem/progenitor cells in fetal and adult mouse livers. When the purified CD13(high)CD133(+) cells were cultured at a low density with feeder cells in the presence of suitable growth factors and signaling inhibitors (ALK inhibitor A-83-01 and ROCK inhibitor Y-27632), individual cells gave rise to relatively large colonies. These colonies consisted of two types of cells expressing hepatocytic marker genes (hepatocyte nuclear factor 4α and α-fetoprotein) and a cholangiocytic marker gene (cytokeratin 7), and continued to proliferate over long periods of time. In a spheroid formation assay, these cells were found to express genes required for mature liver function, such as cytochrome P450 enzymes, and secrete albumin. When these cells were cultured in a suitable extracellular matrix gel, they eventually formed a cholangiocytic cyst-like structure with epithelial polarity, suggesting that human iPS cell-derived hepatic progenitor-like cells have a bipotent differentiation ability. Collectively these data indicate that this novel procedure using an in vitro expansion system is useful for not only liver regeneration but also for the determination of molecular mechanisms that regulate liver development.
巻・号 8(7)
ページ e67541
公開日 2013-1-1
DOI 10.1371/journal.pone.0067541
PII PONE-D-13-04177
PMID 23935837
PMC PMC3723819
MeSH AC133 Antigen Amides / pharmacology Animals Antigens, CD / metabolism Biomarkers / metabolism CD13 Antigens / metabolism Cell Differentiation / drug effects Cell Separation Cells, Cultured Cytochrome P-450 Enzyme System / metabolism Cytokines / pharmacology Feeder Cells / cytology Flow Cytometry Glycoproteins / metabolism Hepatocyte Nuclear Factor 4 / metabolism Hepatocytes / cytology* Hepatocytes / drug effects Hepatocytes / metabolism Humans Induced Pluripotent Stem Cells / cytology* Induced Pluripotent Stem Cells / drug effects Induced Pluripotent Stem Cells / metabolism Intercellular Signaling Peptides and Proteins / pharmacology Keratin-7 / metabolism Mice Peptides / metabolism Pyrazoles / pharmacology Pyridines / pharmacology Spheroids, Cellular / cytology* Spheroids, Cellular / drug effects Spheroids, Cellular / metabolism Thiocarbamates / pharmacology Thiosemicarbazones alpha-Fetoproteins / metabolism
IF 2.74
引用数 41
WOS 分野 MULTIDISCIPLINARY SCIENCES
リソース情報
ヒト・動物細胞 Hep G2(RCB1886)