RRC ID 46088
著者 Mohammadi A, Byrne Rodgers J, Kotera I, Ryu WS.
タイトル Behavioral response of Caenorhabditis elegans to localized thermal stimuli.
ジャーナル BMC Neurosci
Abstract BACKGROUND:Nociception evokes a rapid withdrawal behavior designed to protect the animal from potential danger. C. elegans performs a reflexive reversal or forward locomotory response when presented with noxious stimuli at the head or tail, respectively. Here, we have developed an assay with precise spatial and temporal control of an infrared laser stimulus that targets one-fifth of the worm's body and quantifies multiple aspects of the worm's escape response.
RESULTS:When stimulated at the head, we found that the escape response can be elicited by changes in temperature as small as a fraction of a degree Celsius, and that aspects of the escape behavior such as the response latency and the escape direction change advantageously as the amplitude of the noxious stimulus increases. We have mapped the behavioral receptive field of thermal nociception along the entire body of the worm, and show a midbody avoidance behavior distinct from the head and tail responses. At the midbody, the worm is sensitive to a change in the stimulus location as small as 80 μm. This midbody response is probabilistic, producing either a backward, forward or pause state after the stimulus. The distribution of these states shifts from reverse-biased to forward-biased as the location of the stimulus moves from the middle towards the anterior or posterior of the worm, respectively. We identified PVD as the thermal nociceptor for the midbody response using calcium imaging, genetic ablation and laser ablation. Analyses of mutants suggest the possibility that TRPV channels and glutamate are involved in facilitating the midbody noxious response.
CONCLUSION:Through high resolution quantitative behavioral analysis, we have comprehensively characterized the C. elegans escape response to noxious thermal stimuli applied along its body, and found a novel midbody response. We further identified the nociceptor PVD as required to sense noxious heat at the midbody and can spatially differentiate localized thermal stimuli.
巻・号 14
ページ 66
公開日 2013-7-3
DOI 10.1186/1471-2202-14-66
PII 1471-2202-14-66
PMID 23822173
PMC PMC3703451
MeSH Animals Caenorhabditis elegans Caenorhabditis elegans Proteins / genetics Escape Reaction / physiology* Hot Temperature LIM-Homeodomain Proteins / genetics Nociception / physiology* Nociceptors / physiology* Transcription Factors / genetics
IF 2.811
引用数 30
WOS 分野 NEUROSCIENCES
リソース情報
線虫 tm1552