RRC ID 46175
Author Ritter AD, Shen Y, Fuxman Bass J, Jeyaraj S, Deplancke B, Mukhopadhyay A, Xu J, Driscoll M, Tissenbaum HA, Walhout AJ.
Title Complex expression dynamics and robustness in C. elegans insulin networks.
Journal Genome Res
Abstract Gene families expand by gene duplication, and resulting paralogs diverge through mutation. Functional diversification can include neofunctionalization as well as subfunctionalization of ancestral functions. In addition, redundancy in which multiple genes fulfill overlapping functions is often maintained. Here, we use the family of 40 Caenorhabditis elegans insulins to gain insight into the balance between specificity and redundancy. The insulin/insulin-like growth factor (IIS) pathway comprises a single receptor, DAF-2. To date, no single insulin-like peptide recapitulates all DAF-2-associated phenotypes, likely due to redundancy between insulin-like genes. To provide a first-level annotation of potential patterns of redundancy, we comprehensively delineate the spatiotemporal and conditional expression of all 40 insulins in living animals. We observe extensive dynamics in expression that can explain the lack of simple patterns of pairwise redundancy. We propose a model in which gene families evolve to attain differential alliances in different tissues and in response to a range of environmental stresses.
Volume 23(6)
Pages 954-65
Published 2013-6-1
DOI 10.1101/gr.150466.112
PII gr.150466.112
PMID 23539137
PMC PMC3668363
MeSH Animals Caenorhabditis elegans / genetics* Caenorhabditis elegans / metabolism* Cluster Analysis Gene Expression Profiling Gene Expression Regulation* Gene Expression Regulation, Developmental Gene Regulatory Networks Insulin / genetics* Insulin / metabolism* RNA Interference Signal Transduction*
IF 11.093
Times Cited 47
C.elegans tm1907 tm4144