RRC ID 51244
Author Tamada A, Igarashi M.
Title Revealing chiral cell motility by 3D Riesz transform-differential interference contrast microscopy and computational kinematic analysis.
Journal Nat Commun
Abstract Left-right asymmetry is a fundamental feature of body plans, but its formation mechanisms and roles in functional lateralization remain unclear. Accumulating evidence suggests that left-right asymmetry originates in the cellular chirality. However, cell chirality has not yet been quantitatively investigated, mainly due to the absence of appropriate methods. Here we combine 3D Riesz transform-differential interference contrast (RT-DIC) microscopy and computational kinematic analysis to characterize chiral cellular morphology and motility. We reveal that filopodia of neuronal growth cones exhibit 3D left-helical motion with retraction and right-screw rotation. We next apply the methods to amoeba Dictyostelium discoideum and discover right-handed clockwise cell migration on a 2D substrate and right-screw rotation of subcellular protrusions along the radial axis in a 3D substrate. Thus, RT-DIC microscopy and the computational kinematic analysis are useful and versatile tools to reveal the mechanisms of left-right asymmetry formation and the emergence of lateralized functions.
Volume 8(1)
Pages 2194
Published 2017-12-19
DOI 10.1038/s41467-017-02193-w
PII 10.1038/s41467-017-02193-w
PMID 29259161
PMC PMC5736583
MeSH Animals Biomechanical Phenomena / physiology Cell Culture Techniques / methods Cell Movement / physiology* Cells, Cultured Computational Biology / methods Dictyostelium / physiology Growth Cones / physiology* Hippocampus / cytology Imaging, Three-Dimensional / methods* Isomerism Mice Mice, Inbred ICR Microscopy, Interference / methods* Pseudopodia / chemistry* Pseudopodia / physiology Rotation
IF 12.353
Resource
Cellular slime molds S00001