RRC ID 52790
Author Hagiwara D, Sakai K, Suzuki S, Umemura M, Nogawa T, Kato N, Osada H, Watanabe A, Kawamoto S, Gonoi T, Kamei K.
Title Temperature during conidiation affects stress tolerance, pigmentation, and trypacidin accumulation in the conidia of the airborne pathogen Aspergillus fumigatus.
Journal PLoS One
Abstract Asexual spores (conidia) are reproductive structures that play a crucial role in fungal distribution and survival. As fungal conidia are, in most cases, etiological agents of plant diseases and fungal lung disease, their stress resistance and interaction with their hosts have drawn increasing attention. In the present study, we investigated whether environmental temperature during conidiation affects the stress tolerance of the conidia of the human pathogenic fungus Aspergillus fumigatus. Conidia from a 25°C culture showed a lower tolerance to heat (60°C) and oxidative (H2O2) stresses and a marked resistance to ultraviolet radiation exposure, compared with those produced at 37 and 45°C. The accumulation of trehalose was lower in the conidia from the 25°C culture. Furthermore, the conidia from the 25°C culture showed darker pigmentation and increased transcripts of dihydroxynaphthalene (DHN)-melanin biosynthesis-related genes (i.e., pksP, arp1, and arp2). An RNA-sequencing analysis revealed that the transcription level of the trypacidin (tpc) gene cluster, which contains 13 genes, was sharply and coordinately activated in the conidia from the 25°C culture. Accordingly, trypacidin was abundant in the conidia from the 25°C culture, whereas there was little trypacidin in the conidia from the 37°C culture. Taken together, these data show that the environmental temperature during conidiation affects conidial properties such as stress tolerance, pigmentation, and mycotoxin accumulation. To enhance our knowledge, we further explored the temperature-dependent production of DHN-melanin and trypacidin in clinical A. fumigatus isolates. Some of the isolates showed temperature-independent production of DHN-melanin and/or trypacidin, indicating that the conidia-associated secondary metabolisms differed among the isolates.
Volume 12(5)
Pages e0177050
Published 2017-5-9
DOI 10.1371/journal.pone.0177050
PII PONE-D-16-42912
PMID 28486558
PMC PMC5423626
MeSH Aspergillus fumigatus / metabolism Aspergillus fumigatus / physiology* Melanins / metabolism Pigmentation* Stress, Physiological* Temperature* Transcriptome Trehalose / metabolism
IF 2.74
Times Cited 12
Pathogenic eukaryotic microorganisms 病原真菌:IFM 59056, IFM 59359, IFM 60237, IFM 59365, IFM 59073, IFM 60514, IFM 61407, IFM 61610, IFM 54229 (= Af293 )