RRC ID 54138
著者 Yasuda S, Kusakawa S, Kuroda T, Miura T, Tano K, Takada N, Matsuyama S, Matsuyama A, Nasu M, Umezawa A, Hayakawa T, Tsutsumi H, Sato Y.
タイトル Tumorigenicity-associated characteristics of human iPS cell lines.
ジャーナル PLoS One
Abstract Human induced pluripotent stem cells (hiPSCs) represent promising raw materials of human cell-based therapeutic products (hCTPs). As undifferentiated hiPSCs exhibit intrinsic tumorigenicity properties that enable them to form teratomas, hCTPs containing residual undifferentiated hiPSCs may cause tumor formation following transplantation. We first established quantitative and sensitive tumorigenicity testing of hiPSCs dissociated into single cells using NOD/Shi-scid IL2Rγnull (NOG) mice by inhibiting apoptosis of hiPSCs with a Rho kinase inhibitor. To examine different features in tumorigenicity of various hiPSCs, 10 commonly available hiPSC lines were subjected to in vivo tumorigenicity testing. Transplanted hiPSC lines showed remarkable variation in tumor incidence, formation latency, and volumes. Most of the tumors formed were classified as immature teratomas. However, no signs of malignancies, such as carcinoma and sarcoma, were recognized in the tumors. Characteristics associated tumorigenicity of hiPSCs were investigated with microarray analysis, karyotype analysis, and whole exome sequencing. Gene expression profiling and pathway analysis supported different features of hiPSC lines in tumorigenicity. hiPSC lines showed chromosomal abnormalities in some lines and 61-77 variants of cancer-related genes carrying effective nonsynonymous mutations, which were confirmed in the COSMIC databases. In this study, the chromosomal abnormalities and cancer-related gene mutations observed in hiPSC lines did not lead to the malignancy of tumors derived from hiPSCs. Our results suggest that the potential tumorigenicity risk of hCTPs containing residual undifferentiated hiPSCs is dependent on not only amounts of undifferentiated hiPSCs but also features of the cell lines used as raw materials, a finding that should be considered from the perspective of quality of hCTPs used.
巻・号 13(10)
ページ e0205022
公開日 2018-10-4
DOI 10.1371/journal.pone.0205022
PII PONE-D-18-11797
PMID 30286143
PMC PMC6171902
MeSH Carcinogenesis* / genetics Cell Line Exome / genetics Humans Induced Pluripotent Stem Cells / pathology* Karyotype Transcriptome
IF 2.74
引用数 14
リソース情報
ヒト・動物細胞 201B7(HPS0063) 253G1(HPS0002) 409B2(HPS0076) 454E2(HPS0077) HiPS-RIKEN-1A(HPS0003) HiPS-RIKEN-2A(HPS0009) HiPS-RIKEN-12A(HPS0029)