RRC ID 55524
著者 Aikawa S, Baramee S, Sermsathanaswadi J, Thianheng P, Tachaapaikoon C, Shikata A, Waeonukul R, Pason P, Ratanakhanokchai K, Kosugi A.
タイトル Characterization and high-quality draft genome sequence of Herbivorax saccincola A7, an anaerobic, alkaliphilic, thermophilic, cellulolytic, and xylanolytic bacterium.
ジャーナル Syst Appl Microbiol
Abstract An anaerobic, cellulolytic-xylanolytic bacterium, designated strain A7, was isolated from a cellulose-degrading bacterial community inhabiting bovine manure compost on Ishigaki Island, Japan, by enrichment culture using unpretreated corn stover as the sole carbon source. The strain was Gram-positive, non-endospore forming, non-motile, and formed orange colonies on solid medium. Strain A7 was identified as Herbivorax saccincola by DNA-DNA hybridization, and phylogenetic analysis based on 16S rRNA gene sequences showed that it was closely related to H. saccincola GGR1 (= DSM 101079T). H. saccincola A7 (= JCM 31827=DSM 104321) had quite similar phenotypic characteristics to those of strain GGR1. However, the optimum growth of A7 was at alkaline pH (9.0) and 55°C, compared to pH 7.0 at 60°C for GGR1, and the fatty acid profile of A7 contained 1.7-times more C17:0 iso than GGR1. The draft genome sequence revealed that H. saccincola A7 possessed a cellulosome-like extracellular macromolecular complex, which has also been found for Clostridium thermocellum and C. clariflavum. H. saccincola A7 contained more glycoside hydrolases (GHs) belonging to GH families-11 and -2, and more diversity of xylanolytic enzymes, than C. thermocellum and C. clariflavum. H. saccincola A7 could grow on xylan because it encoded essential genes for xylose metabolism, such as a xylose transporter, xylose isomerase, xylulokinase, and ribulose-phosphate 3-epimerase, which are absent from C. thermocellum. These results indicated that H. saccincola A7 has great potential as a microorganism that can effectively degrade lignocellulosic biomass.
巻・号 41(4)
ページ 261-269
公開日 2018-7-1
DOI 10.1016/j.syapm.2018.01.010
PII S0723-2020(18)30037-7
PMID 29482868
MeSH Animals Bacterial Typing Techniques Base Composition Base Sequence Cattle Cellulose / metabolism* Clostridiales* / classification Clostridiales* / genetics Clostridiales* / isolation & purification Composting DNA, Bacterial / genetics Fatty Acids / analysis Feces / microbiology Genome, Bacterial / genetics* Japan Lignin / metabolism Sequence Analysis, DNA
IF 2.808
引用数 7
リソース情報
一般微生物 JCM 31827