RRC ID 57267
著者 Russell SL, Lemseffer N, White PM, Sullivan WT.
タイトル Wolbachia and host germline components compete for kinesin-mediated transport to the posterior pole of the Drosophila oocyte.
ジャーナル PLoS Pathog
Abstract Widespread success of the intracellular bacterium Wolbachia across insects and nematodes is due to efficient vertical transmission and reproductive manipulations. Many strains, including wMel from Drosophila melanogaster, exhibit a specific concentration to the germplasm at the posterior pole of the mature oocyte, thereby ensuring high fidelity of parent-offspring transmission. Transport of Wolbachia to the pole relies on microtubules and the plus-end directed motor kinesin heavy chain (KHC). However, the mechanisms mediating Wolbachia's association with KHC remain unknown. Here we show that reduced levels of the host canonical linker protein KLC results in dramatically increased levels of Wolbachia at the oocyte's posterior, suggesting that KLC and some key associated host cargos outcompete Wolbachia for association with a limited amount of KHC motor proteins. Consistent with this interpretation, over-expression of KHC causes similarly increased levels of posteriorly localized Wolbachia. However, excess KHC has no effect on levels of Vasa, a germplasm component that also requires KHC for posterior localization. Thus, Wolbachia transport is uniquely KHC-limited because these bacteria are likely outcompeted for binding to KHC by some host cargo/linker complexes. These results reveal a novel host-symbiont interaction that underscores the precise regulation required for an intracellular bacterium to co-opt, but not disrupt, vital host processes.
巻・号 14(8)
ページ e1007216
公開日 2018-8-1
DOI 10.1371/journal.ppat.1007216
PII PPATHOGENS-D-18-00975
PMID 30110391
PMC PMC6110520
MeSH Animals Binding, Competitive* Cell Polarity Drosophila melanogaster / metabolism Drosophila melanogaster / microbiology* Germ Cells / microbiology Host-Pathogen Interactions* / physiology Kinesins / metabolism* Microtubules / metabolism Oocytes / metabolism Oocytes / microbiology* Oogenesis / physiology Protein Transport Tissue Distribution Wolbachia / metabolism Wolbachia / physiology*
IF 6.463
引用数 4
リソース情報
ショウジョウバエ