RRC ID 63234
Author Tabuchi Y, Hasegawa H, Suzuki N, Furusawa Y, Hirano T, Nagaoka R, Hirayama J, Hoshi N, Mochizuki T.
Title Genetic response to low‑intensity ultrasound on mouse ST2 bone marrow stromal cells.
Journal Mol Med Rep
Abstract Although low‑intensity ultrasound (LIUS) is a clinically established procedure, the early cellular effect of LIUS on a genetic level has not yet been studied. The current study investigated the early response genes elicited by LIUS in bone marrow stromal cells (BMSCs) using global‑scale microarrays and computational gene expression analysis tools. Mouse ST2 BMSCs were treated with LIUS [ISATA, 25 mW/cm2 for 20 min with a frequency of 1.11 MHz in a pulsed‑wave mode (0.2‑s burst sine waves repeated at 1 kHz)], then cultured for 0.5, 1 and 3 h at 37˚C. The time course of changes in gene expression was evaluated using GeneChip® high‑density oligonucleotide microarrays and Ingenuity® Pathway Analysis tools. The results were verified by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). A single exposure of LIUS did not affect cell morphology, cell growth or alkaline phosphatase activity. However, 61 upregulated and 103 downregulated genes were identified from 0.5 to 3 h after LIUS treatment. Two significant gene networks, labeled E and H, were identified from the upregulated genes, while a third network, labeled T, was identified from the downregulated genes. Gene network E or H containing the immediate‑early genes FBJ osteosarcoma oncogene and early growth response 1 or the heat shock proteins heat shock protein 1a/b was associated mainly with the biological functions of bone physiology and protein folding or apoptosis, respectively. Gene network T containing transcription factors fos‑like antigen 1 and serum response factor was also associated with the biological functions of the gene expression. RT‑qPCR indicated that the expression of several genes in the gene networks E and H were elevated in LIUS‑treated cells. LIUS was demonstrated to induce gene expression after short application in mouse ST2 BMSCs. The results of the present study provide a basis for the elucidation of the detailed molecular mechanisms underlying the cellular effects of LIUS.
Volume 23(3)
Published 2021-3-1
DOI 10.3892/mmr.2020.11812
PII 173
PMID 33398373
PMC PMC7821223
MeSH Animals Bone Marrow Cells / cytology Bone Marrow Cells / metabolism* Cell Line Gene Expression Profiling Gene Expression Regulation* Mice Oligonucleotide Array Sequence Analysis Reverse Transcriptase Polymerase Chain Reaction Stromal Cells / cytology Stromal Cells / metabolism Ultrasonic Waves*
IF 2.1
Human and Animal Cells ST2(RCB0224)