RRC ID 6479
著者 Niki T, Kohno T, Iba S, Moriya Y, Takahashi Y, Saito M, Maeshima A, Yamada T, Matsuno Y, Fukayama M, Yokota J, Hirohashi S.
タイトル Frequent co-localization of Cox-2 and laminin-5 gamma2 chain at the invasive front of early-stage lung adenocarcinomas.
ジャーナル Am J Pathol
Abstract Laminin-5 is an extracellular matrix protein that plays a key role in cell migration and tumor invasion. Cox-2 is an induced isoform of cyclooxygenases that plays an important role in carcinogenesis, suppression of apoptosis, angiogenesis, and metastasis of colon cancer. We report frequent co-expression of cox-2 and laminin-5 at the invasive front of early-stage lung adenocarcinomas. We investigated the expression of cox-2 and laminin-5 immunohistochemically in 102 cases of small-sized lung adenocarcinoma (maximum dimension, 2 cm or less). Cox-2 and laminin-5 were expressed in 97 (95.1%) and 82 (80.4%) cases, respectively. Both were preferentially localized in cancer cells at the cancer-stroma interface, although cox-2 tended to show a diffuse staining pattern in some cases. A comparison of their staining patterns revealed a striking similarity in their distribution in 24 cases, and a partial overlap between their localization in another 20 cases. Moreover, an overall correlation was found between the expression levels of cox-2 and laminin-5 (P = 0.018). To gain insight into the mechanisms that regulate the expression of these proteins, we additionally studied their expression in 58 cases of stage I lung adenocarcinoma, in which p53 status was determined by immunohistochemistry, polymerase chain reaction-single strand conformation polymorphism analysis, and direct sequencing. The results showed that tumors with mutant p53 tended to express more cox-2 than those with wild-type p53 (P = 0.080). Also, tumors that overexpressed p53 had higher levels of cox-2 and laminin-5 than those without p53 overexpression (P = 0.032 and 0.047, respectively). Further immunohistochemical analysis showed that tumors that overexpressed both epidermal growth factor receptor (EGFR) and erbB-2 had higher levels of cox-2 and laminin-5 than those without concomitant overexpression of these proteins (P = 0.014 and P = 0.018, respectively). To see whether EGFR signaling is involved in cox-2 and laminin-5 expression, we further conducted in vitro analyses using six lung adenocarcinoma cell lines (A549, HLC-1, ABC-1, LC-2/ad, VMRC-LCD, and L27). Western blot analyses showed that cox-2 mRNA levels, and to a lesser extent laminin-5 gamma2 mRNA levels, correlated with the expression levels of erbB-2 and the phosphorylated form of MAPK/ERK-1/2 protein. The addition of transforming growth factor-alpha increased both cox-2 and laminin-5 gamma2 mRNA levels in A549, ABC-1, and L27 with different kinetics; the induction of cox-2 occurred earlier than that of laminin-5 gamma2. Finally, the migration of ABC-1 cells was inhibited by MAP kinase kinase inhibitor PD98059 and a selective cox-2 inhibitor NS-398. In contrast, the migration of A549 cells was inhibited by PD98059, but much less effectively by NS-398. These results suggest that co-stimulatory mechanisms may exist that increase the expression of cox-2 and laminin-5 at the invasive front of lung adenocarcinomas and that EGFR signaling could be one of the mechanisms. Further investigations are warranted concerning the role of cox-2 and laminin-5 in cancer cell invasion and the significance of p53 and EGFR signaling in the regulation of cox-2 and laminin-5 expression.
巻・号 160(3)
ページ 1129-41
公開日 2002-3-1
DOI 10.1016/s0002-9440(10)64933-4
PII S0002-9440(10)64933-4
PMID 11891209
PMC PMC1867179
MeSH Adenocarcinoma / metabolism* Adenocarcinoma / pathology* Adult Aged Biomarkers, Tumor* Cell Adhesion Molecules / biosynthesis* Cell Movement Cyclooxygenase 2 ErbB Receptors / metabolism Female Humans Immunohistochemistry Isoenzymes / biosynthesis* Lung Neoplasms / metabolism* Lung Neoplasms / pathology* Male Membrane Proteins Middle Aged Neoplasm Invasiveness Neoplasm Staging Prognosis Prostaglandin-Endoperoxide Synthases / biosynthesis* Signal Transduction
IF 3.491
引用数 75
WOS 分野 PATHOLOGY
リソース情報
ヒト・動物細胞 HLC-1(RCB0083) LC-2/ad(RCB0440)