RRC ID 68116
著者 Koike H, Iwasawa K, Ouchi R, Maezawa M, Kimura M, Kodaka A, Nishii S, Thompson WL, Takebe T.
タイトル Engineering human hepato-biliary-pancreatic organoids from pluripotent stem cells.
ジャーナル Nat Protoc
Abstract Human organoids are emerging as a valuable resource to investigate human organ development and disease. The applicability of human organoids has been limited, partly due to the oversimplified architecture of the current technology, which generates single-tissue organoids that lack inter-organ structural connections. Thus, engineering organoid systems that incorporate connectivity between neighboring organs is a critical unmet challenge in an evolving organoid field. Here, we describe a protocol for the continuous patterning of hepatic, biliary and pancreatic (HBP) structures from a 3D culture of human pluripotent stem cells (PSCs). After differentiating PSCs into anterior and posterior gut spheroids, the two spheroids are fused together in one well. Subsequently, self-patterning of multi-organ (i.e., HBP) domains occurs within the boundary region of the two spheroids, even in the absence of any extrinsic factors. Long-term culture of HBP structures induces differentiation of the domains into segregated organs complete with developmentally relevant invagination and epithelial branching. This in-a-dish model of human hepato-biliary-pancreatic organogenesis provides a unique platform for studying human development, congenital disorders, drug development and therapeutic transplantation. More broadly, our approach could potentially be used to establish inter-organ connectivity models for other organ systems derived from stem cell cultures.
巻・号 16(2)
ページ 919-936
公開日 2021-2-1
DOI 10.1038/s41596-020-00441-w
PII 10.1038/s41596-020-00441-w
PMID 33432231
PMC PMC8212777
MeSH Bile Ducts / cytology Cell Culture Techniques / methods* Cell Differentiation / physiology Humans Liver / cytology Organogenesis / physiology Organoids / cytology* Organoids / metabolism Pancreas / cytology Pluripotent Stem Cells / cytology Pluripotent Stem Cells / metabolism Tissue Engineering / methods*
IF 10.419
リソース情報
ヒト・動物細胞 409B2(HPS0076)