Abstract |
Monomeric cyt c has been reported to bind to the mitochondrial membrane by electrostatic and hydrophobic interactions with anionic phospholipids. We have previously shown that domain-swapped oligomeric cyt c retains the secondary structure of the monomer, and its surface possesses a larger area and more charges compared to the monomer. However, the effect of oligomerization of cyt c on cells has yet to be revealed. Herein, we investigated the interaction of oligomeric cyt c with anionic phospholipid-containing vesicles and the outer membrane of HeLa cells. Oligomeric cyt c interacted more strongly than monomeric cyt c with anionic phospholipid-containing vesicles and the outer membrane of HeLa cells. Oligomeric cyt c induced lateral phase separation of lipids in LUVs and GUVs, thereby leading to membrane disruption, whereas monomeric cyt c did not. Morphological changes in HeLa cells resulted from interaction with oligomeric cyt c, but little from interaction with the monomer. These results show that domain-swapped oligomeric proteins might exhibit properties different to those of monomer in cell systems.
|