RRC ID 72375
著者 Mehnati P, Yatagai F, Tsuzuki T, Hanaoka F, Sasaki H.
タイトル Judgement on "hit or non-hit" of CHO cells exposed to accelerated heavy-ions (Fe- or Ar-ions) using division delay and CR-39 plastics as an indicator.
ジャーナル Fukuoka Igaku Zasshi
Abstract The cell killing effect of ionizing radiation depends on the degree of linear energy transfer (LET). The relative biological effectiveness (RBE) reaches a maximum at LET of around 100-200 keV/micron and decreases at higher levels. The ion clusters produced by high-LET radiation are not uniformly distributed. The incidence of non-hit cell events is higher in high LET irradiation than in the cases of low-LET irradiation. This fact could explain the decrease in the cell killing effect at higher levels of LET irradiation. Since the cell killing effect may be related to the nuclear traversal of heavy-ions, it is necessary to establish methods to distinguish the hit cells from the non-hit cells, especially in case with high LET irradiation. Using time-lapse photography, we first examined the hit events by observing the division delay in the cells caused by high-LET irradiation. In addition, we explored the use of CR-39 plastics to detect the exact position of heavy-ion traversal on the surface of a flask where cells were growing. When Chinese hamster ovary (CHO-K1) cells were exposed to 4 Gy of accelerated Fe-ions (2000 keV/micron) or Ar (1640 keV/micron)-ions, the surviving fraction decreased to about 30% in both cases of irradiation. Eighty percent of the irradiated cells, suffered a division delay in contrast to the remaining 20% of the cells which showed a normal division time (12-13 hrs). The later 20% of the cells is considered to be a population of cells which were not actually traversed by heavy-ions. The difference between the higher values of the surviving fraction (approximately 30%) and the non-hit cell population (20%) indicates that some hit cells can grow even after being hit by heavy-ions. The fraction of recovered cells determined by the time-lapse photography method was 10%, and this value closely correlated with the difference between the surviving fraction and the non-hit cells. We used the Poisson distribution of the hit-events by heavy-ions among the cell population in order to calculate the fraction of cells receiving at least a single-hit in the cell nucleus (130 micron 2 in average size). From this calculation we determined that 80% of the cells had a single hit to their nuclei by a heavy-ion which induced such early cellular responses as division delay. Our finding in the experiments using CR-39 plastics as a detector for hit-sites further supported the idea that the hit lethality of a cell is related to heavy-ion traversal through its nucleus. This study indicates the possible usefulness of both the division delay and CR-39 plastic methods for evaluating the biological effects of heavy-ions, especially when these two methods are combined.
巻・号 92(3)
ページ 46-57
公開日 2001-3-1
PMID 11357328
MeSH Animals Argon* CHO Cells / radiation effects* Cell Division / radiation effects* Cell Survival / radiation effects Cells, Cultured Cricetinae Female Heavy Ions* Iron* Linear Energy Transfer Polyethylene Glycols* Radiometry / methods*
リソース情報
ヒト・動物細胞 CHO-K1(RCB0285)