RRC ID 73052
Author Deng DJ, Wang X, Yue KY, Wang Y, Jin QW.
Title Analysis of the potential role of fission yeast PP2A in spindle assembly checkpoint inactivation.
Journal FASEB J
Abstract As a surveillance mechanism, the activated spindle assembly checkpoint (SAC) potently inhibits the E3 ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) to ensure accurate chromosome segregation. Although the protein phosphatase 2A (PP2A) has been proposed to be both, directly and indirectly, involved in spindle assembly checkpoint inactivation in mammalian cells, whether it is similarly operating in the fission yeast Schizosaccharomycer pombe has never been demonstrated. Here, we investigated whether fission yeast PP2A is involved in SAC silencing by following the rate of cyclin B (Cdc13) destruction at SPBs during the recovery phase in nda3-KM311 cells released from the inhibition of APC/C by the activated spindle checkpoint. The timing of the SAC inactivation is only slightly delayed when two B56 regulatory subunits (Par1 and Par2) of fission yeast PP2A are absent. Overproduction of individual PP2A subunits either globally in the nda3-KM311 arrest-and-release system or locally in the synthetic spindle checkpoint activation system only slightly suppresses the SAC silencing defects in PP1 deletion (dis2Δ) cells. Our study thus demonstrates that the fission yeast PP2A is not a key regulator actively involved in SAC inactivation.
Volume 36(9)
Pages e22524
Published 2022-9-1
DOI 10.1096/fj.202101884R
PMID 36006032
MeSH Anaphase-Promoting Complex-Cyclosome / genetics Animals Cell Cycle Proteins / genetics Cell Cycle Proteins / metabolism M Phase Cell Cycle Checkpoints Mammals / metabolism Protein Phosphatase 2 / genetics Protein Phosphatase 2 / metabolism Schizosaccharomyces* / genetics Schizosaccharomyces* / metabolism Spindle Apparatus / physiology
IF 4.966